Rotation Invariant Local Binary Pattern for Blind Detection of Copy-Move Forgery with Affine Transform

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10040)

Abstract

For copy-move forgery, the copied region may be rotated or flipped to fit the scene better. A blind image forensics approach is proposed for copy-move forgery detection using rotation invariant uniform local binary patterns (\(LBP_{P, R}^{riu2}\)). The image is first filtered and divided into overlapped blocks with fixed size. The features are extracted from each block using \(LBP_{P, R}^{riu2}\). Then, the feature vectors are sorted and block pairs are identified by estimating the Euclidean distances of these feature vectors. Specifically, a shift-vector counter C is exploited to detect and locate tampering region. Experimental results show that the proposed approach can deal with multiple copy-move forgeries, and is robust to JPEG compression, noise, blurring region rotation and flipping.

Keywords

Passive image forensics Copy-move forgery Local binary pattern (LBP) Rotation Flipping 

References

  1. 1.
    Al-Qershi, O.M., Khoo, B.E.: Passive detection of copy-move forgery in digital images: state-of-the-art. Forensic Sci. Int. 231(1), 284–295 (2013)CrossRefGoogle Scholar
  2. 2.
    Li, J., Li, X., Yang, B., et al.: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics Secur. 10(3), 507–518 (2015)CrossRefGoogle Scholar
  3. 3.
    Huang, Y., Lu, W., Sun, W., et al.: Improved DCT-based detection of copy-move forgery in images. Forensic Sci. Int. 206(1), 178–184 (2011)CrossRefGoogle Scholar
  4. 4.
    Farid, A.P., Popescu, A.C.: Exposing digital forgeries by detecting duplicated image regions. Technical report, TR2004-515, Department of Computer Science, Dartmouth College, Hanover, New Hampshire (2004)Google Scholar
  5. 5.
    Bayram, S., Sencar, H.T., Memon, N.: An efficient and robust method for detecting copy-move forgery. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1053–1056. IEEE (2009)Google Scholar
  6. 6.
    Li, L., Li, S., Zhu, H., et al.: Detecting copy-move forgery under affine transforms for image forensics. Comput. Electr. Eng. 40(6), 1951–1962 (2014)CrossRefGoogle Scholar
  7. 7.
    Mahdian, B., Saic, S.: Detection of copy-move forgery using a method based on blur moment invariants. Forensic Sci. Int. 171(2), 180–189 (2007)CrossRefGoogle Scholar
  8. 8.
    Ryu, S.J., Lee, M.J., Lee, H.K.: Detection of copy-rotate-move forgery using zernike moments. In: Proceedings of Information Hiding (LH), pp. 51–65 (2010)Google Scholar
  9. 9.
    Li, L., Li, S., Zhu, H., et al.: An efficient scheme for detecting copy-move forged images by local binary patterns. J. Inf. Hiding Multimedia Sig. Process. 4(1), 46–56 (2013)Google Scholar
  10. 10.
    Davarzani, R., Yaghmaie, K., Mozaffari, S., et al.: Copy-move forgery detection using multiresolution local binary patterns. Forensic Sci. Int. 231(1), 61–72 (2013)CrossRefGoogle Scholar
  11. 11.
    Amerini, I., Ballan, L., Caldelli, R., et al.: A sift-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans. Inf. Forensics Secur. 6(3), 1099–1110 (2011)CrossRefGoogle Scholar
  12. 12.
    Shivakumar, B.L., Baboo, L.D.S.S.: Detection of region duplication forgery in digital images using SURF. IJCSI Int. J. Comput. Sci. Issues 8(4), 223–229 (2011)Google Scholar
  13. 13.
    Christlein, V., Riess, C., Jordan, J., et al.: An evaluation of popular copy-move forgery detection approaches. IEEE Trans. Inf. Forensics Secur. 7(6), 1841–1854 (2012)CrossRefGoogle Scholar
  14. 14.
    Huang, D., Shan, C., Ardabilian, M., et al.: Local binary patterns and its application to facial image analysis: a survey. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 41(6), 765–781 (2011)CrossRefGoogle Scholar
  15. 15.
    Tralic, D., Zupancic, I., Grgic, S., et al.: CoMoFoD-new database for copy-move forgerydetection. In: Proceedings of 2013 55th International Symposium on ELMAR, pp. 49–54. IEEE (2013)Google Scholar
  16. 16.
    Pan, Z., Zhang, Y., Kwong, S.: Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans. Broadcast. 61(2), 166–176 (2015)CrossRefGoogle Scholar
  17. 17.
    Gu, B., Sheng, V.S., Tay, K.Y., et al.: Incremental support vector learning for ordinal regression. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1403–1416 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gu, B., Sheng, V.S., Wang, Z., et al.: Incremental learning for v-support vector regression. Neural Netw. 67, 140–150 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.School of Information Science and EngineeringHunan UniversityChangshaChina

Personalised recommendations