Advertisement

Fitting Spherical Laguerre Voronoi Diagrams to Real-World Tessellations Using Planar Photographic Images

  • Supanut ChaideeEmail author
  • Kokichi Sugihara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9943)

Abstract

There are many natural phenomena displayed as polygonal tessellations on curved surfaces, typically found in fruit skin patterns. The paper proposes a method to fit given tessellations with spherical Laguerre Voronoi diagrams. The main target of this paper is fruit skin patterns such as jackfruit and lychee covered by tessellation patterns in which each cell contains a unique spike dot that can be considered as a generator. The problem of estimating the weights is reduced to an optimization problem, and can be solved efficiently. The experiments were done with ideal data and real fruit skin data, which show the validity of the method. We also propose related problems for further studies.

Keywords

Spherical Laguerre Voronoi diagram Voronoi approximation Tessellation fitting Fruit skin patterns 

Notes

Acknowledgments

The first author acknowledges the support of the MIMS Ph.D. Program of the Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, and the DPST of IPST, Ministry of Education, Thailand. This research is partly supported by Grant-in-Aid for Basic Research No. 24360039 of MEXT.

References

  1. 1.
    Aloupis, G., Pérez-Rosés, H., Pineda-Villavicencio, G., Taslakian, P., Trinchet-Almaguer, D.: Fitting voronoi diagrams to planar tesselations. In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp. 349–361. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45278-9_30 CrossRefGoogle Scholar
  2. 2.
    Ash, P.F., Bolker, E.D.: Recognizing dirichlet tessellations. Geom. Ded. 19, 175–206 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aurenhammer, F.: Power diagram: properties, algorithms, and applications. SIAM J. Comput. 16, 78–96 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aurenhammer, F.: A criterion for the affine equivalence of cell complexes in \(\mathbb{R}^d\) and convex polyhedra in \(\mathbb{R}^{d+1}\). Discrete Comput. Geom. 2, 49–64 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Aurenhammer, F.: Recognising polytopical cell complexes and constructing projection polyhedra. J. Symbolic. Comput. 3, 249–255 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Aurenhammer, F., Klein, R., Lee, D.T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific Publishing Company, Singapore (2013)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chaidee, S., Sugihara, K.: Approximation of fruit skin patterns using spherical voronoi diagram. Pattern Anal. Appl. (2016). DOI: 10.1007/s10044-016-0534-2
  8. 8.
    Chaidee, S., Sugihara, K.: Numerical fitting of planar photographic images with spherical voronoi diagram. In: 10th Asian Forum on Graphic Science (2015). DOI: 10.13140/RG.2.1.1398.1924
  9. 9.
    Duan, Q., Kroese, D.P., Brereton, T., Spettl, A., Schmidt, V.: Inverting laguerre tessellations. Comput. J. 57, 1431–1440 (2014)CrossRefGoogle Scholar
  10. 10.
    Evans, D.G., Jones, S.M.: Detecting voronoi (area-of-influence) polygons. Math. Geol. 19, 523–537 (1987)CrossRefGoogle Scholar
  11. 11.
    Hartvigsen, D.: Recognizing voronoi diagrams with linear programming. ORSA. J. Comput. 4, 369–374 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Honda, H.: Description of cellular patterns by dirichlet domains: the two-dimensional case. J. Theor. Biol. 72, 523–543 (1978)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Honda, H.: Geometrical models for cells in tissues. Int. Rev. Cytol. 81, 191–246 (1983)CrossRefGoogle Scholar
  14. 14.
    Imai, H., Iri, M., Murota, K.: Voronoi diagram in the laguerre geometry and its applications. SIAM J. Comput. 14, 93–105 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lautensack, C.: Random Laguerre Tessellations. Dissertation (2007)Google Scholar
  16. 16.
    Lautensack, C.: Fitting three-dimensional laguerre tessellations to foam structures. J. Appl. Stat. 35, 985–995 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Liebscher, A.: Laguerre approximztion of random foams. Philos. Mag. 95, 2777–2792 (2015)CrossRefGoogle Scholar
  18. 18.
    Loeb, L.: Space Structures: Their Harmony and Counterpoint. Addison Wesley, Reading (1976)zbMATHGoogle Scholar
  19. 19.
    Lyckegaard, A., Lauridsen, E.M., Ludwig, W., Fonda, R.W., Poulsen, H.F.: On the use of laguerre tessellations for representations of 3D grain structures. Adv. Eng. Mater. 13, 165–170 (2011)CrossRefGoogle Scholar
  20. 20.
    Mach, P., Koehl, P.: An analytical method for computing atomic contact areas in biomolecules. J. Comput. Chem. 34, 105–120 (2013)CrossRefGoogle Scholar
  21. 21.
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. Wiley, Chichester (2000)CrossRefzbMATHGoogle Scholar
  22. 22.
    Schoenberg, F.P., Ferguson, T., Lu, C.: Inverting dirichlet tessellations. Comput. J. 46, 76–83 (2003)CrossRefzbMATHGoogle Scholar
  23. 23.
    Spettl, A., Breregon, T., Duan, Q., Werz, T., Krill Ill, C.E., Kroese, D.P., Schmidt, V.: Fitting laguerre tessellation approximations to tomographic image data. Philos. Mag. 96, 166–189 (2016). doi: 10.1080/14786435.2015.1125540 CrossRefGoogle Scholar
  24. 24.
    Sugihara, K.: Three-dimensional convex hull as a fruitful source of diagrams. Theor. Comput. Sci. 235, 325–337 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sugihara, K.: Laguerre voronoi diagram on the sphere. J. Geom. Graph. 6, 69–81 (2002)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Suzuki, A., Iri, M.: Approximation of a tessellation of the plane by a voronoi diagram. J. Oper. Res. Soc. Jpn. 29, 69–97 (1986)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Graduate School of Advanced Mathematical SciencesMeiji UniversityTokyoJapan

Personalised recommendations