On Using Genetic Algorithm for Initialising Semi-supervised Fuzzy c-Means Clustering

  • Daphne Teck Ching LaiEmail author
  • Jonathan M. Garibaldi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 532)


In a previous work, suitable initialisation techniques were incorporated with semi-supervised Fuzzy c-Means clustering (ssFCM) to improve clustering results on a trial and error basis. In this work, we present a single fully-automatic version of an existing semi-supervised Fuzzy c-means clustering framework which uses genetically-modified prototypes (ssFCMGA). Initial prototypes are generated by GA to initialise the ssFCM algorithm without experimentation of different initialisation techniques. The framework is tested on a real, biomedical dataset NTBC and on the Arrhythmia UCI dataset, using varying amounts of labelled data from 10 % to 60 % of the total data patterns. Different ssFCM threshold values and fitness functions for ssFCMGA are also investigated (sGAs). We used accuracy and NMI to measure class-label agreement and internal measures WSS, BSS, CH, CWB, DB and DU to evaluate cluster quality of the clustering algorithms. Results are compared with those produced by the existing ssFCM. While ssFCMGA and sGAs produced slightly lower agreement level than ssFCM with known class labels based on accuracy and NMI, the other six measurements showed improvement in the results in terms of compactness and well-separatedness (cluster quality), particularly when labelled data are low at 10 %. Furthermore, the cluster quality are shown to further improve using ssFCMGA with a more complex fitness function (sGA2). This demonstrates the application of GA in ssFCM improves cluster quality without exploration of different initialisation techniques.


Semi-supervised Genetic algorithms Fuzzy clustering 



This work was supported by the Universiti Brunei Darussalam under Grant UBD/PNC2/2/RG/1(311).


  1. 1.
    Pedrycz, W., Waletzky, J.: Fuzzy clustering with partial supervision. IEEE Trans. Syst. Man Cybern. 27(5), 787–795 (1997)CrossRefGoogle Scholar
  2. 2.
    Tou, J., Gonzales, R.: Pattern Recognition Principles. Addison-Wesley, Reading (1974)Google Scholar
  3. 3.
    Katsavounidis, I., Kuo, C.C.J., Zhang, Z.: A new initialization technique for generalized lloyd iteration. Sig. Process. Lett. 1(10), 144–146 (1994)CrossRefGoogle Scholar
  4. 4.
    Chiu, S.: Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2, 267–278 (1994)CrossRefGoogle Scholar
  5. 5.
    Lai, D.T.C., Garibaldi, J.M.: Investigating distance metrics in semi-supervised fuzzy c-means for breast cancer classification. In: Peterson, L.E., Masulli, F., Russo, G. (eds.) CIBB 2012. LNCS, vol. 7845, pp. 147–157. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38342-7_13 CrossRefGoogle Scholar
  6. 6.
    Färber, I., Günnemann, S., Kriegel, H.P., Kröger, P., Müller, E., Schubert, E., Seidl, T., Zimek, A.: On using class-labels in evaluation of clusterings. In: MultiClust: 1st International Workshop on Discovering, Summarizing and Using Multiple Clusterings held in Conjunction with KDD, p. 1 (2010)Google Scholar
  7. 7.
    Hruschka, E.R., Campello, R.J., Freitas, A.A., De Carvalho, A.C., et al.: A survey of evolutionary algorithms for clustering. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 39(2), 133–155 (2009)CrossRefGoogle Scholar
  8. 8.
    Wikaisuksakul, S.: A multi-objective genetic algorithm with fuzzy c-means for automatic data clustering. Appl. Soft Comput. 24, 679–691 (2014)CrossRefGoogle Scholar
  9. 9.
    Liu, H., Huang, S.T.: Evolutionary semi-supervised fuzzy clustering. Pattern Recogn. Lett. 24, 3105–3113 (2003)CrossRefGoogle Scholar
  10. 10.
    Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern Recogn. 33(9), 1455–1465 (2000)CrossRefGoogle Scholar
  11. 11.
    Soria, D., Garibaldi, J.M., Ambrogi, F., Green, A.R., Powe, D., Rakha, E., Macmillan, R.D., Blamey, R.W., Ball, G., Lisboa, P.J., Etchells, T.A., Boracchi, P., Biganzoli, E., Ellis, I.O.: A methodology to identify consensus classes from clustering algorithms applied to immunohistochemical data from breast cancer patients. Comput. Biol. Med. 40(3), 318–330 (2010)CrossRefGoogle Scholar
  12. 12.
    Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3(1), 1–27 (1974)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1, 224–227 (1979)CrossRefGoogle Scholar
  15. 15.
    Rezaee, M.R., Lelieveldt, B., Reiber, J.: A new cluster validity index for the fuzzy c-mean. Pattern Recogn. Lett. 19(3–4), 237–246 (1998)CrossRefzbMATHGoogle Scholar
  16. 16.
    Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Daphne Teck Ching Lai
    • 1
    Email author
  • Jonathan M. Garibaldi
    • 2
  1. 1.Faculty of ScienceUniversiti Brunei DarussalamGadongBrunei
  2. 2.School of Computer ScienceUniversity of NottinghamNottinghamUK

Personalised recommendations