Demand-Side Management: Optimising Through Differential Evolution Plug-in Electric Vehicles to Partially Fulfil Load Demand

  • Edgar Galván-López
  • Marc Schoenauer
  • Constantinos Patsakis
  • Leonardo Trujillo
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 669)

Abstract

In this paper, we investigate the use of an stochastic optimisation bio-inspired algorithm, differential evolution, and proposed two fitness (cost) functions that can automatically create an intelligent scheduling for a demand-side management system so that it can use plug-in electric vehicles’s (PEVs) batteries to partially and temporarily fulfil electricity requirements from a set of household units. To do so, we proposed two fitness functions that aim: (a) to use the most amount of energy from the batteries of PEVs while still guaranteeing that they can complete a journey, and (b) to enrich the previous function to reduce peak loads.

Keywords

Differential evolution Demand-side management systems Plug-in electric vehicles 

Notes

Acknowledgements

Edgar Galván López’s research is funded by an ELEVATE Fellowship, the Irish Research Council’s Career Development Fellowship co-funded by Marie Curie Actions. The first author would also like to thank the TAO group at INRIA Saclay & LRI - Univ. Paris-Sud and CNRS, Orsay, France for hosting him during the outgoing phase of the ELEVATE Fellowship. The authors would like to thank all the reviewers for their useful comments that helped us to significantly improve our work.

References

  1. 1.
    Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Evolutionary Computation 1: Basic Algorithms and Operators. IOP Publishing Ltd., Bristol (1999)Google Scholar
  2. 2.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer Verlag, Heidelberg (2003)CrossRefMATHGoogle Scholar
  3. 3.
    Galván-López, E., McDermott, J., O’Neill, M., Brabazon, A.: Defining locality in genetic programming to predict performance. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)Google Scholar
  4. 4.
    Fagan, D., O’Neill, M., Galván-López, E., Brabazon, A., McGarraghy, S.: An analysis of genotype-phenotype maps in grammatical evolution. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 62–73. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12148-7_6 CrossRefGoogle Scholar
  5. 5.
    Galván-López, E., Dignum, S., Poli, R.: The effects of constant neutrality on performance and problem hardness in GP. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., Falco, I., Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 312–324. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78671-9_27. http://dl.acm.org/citation.cfm?id=1792694.1792723 CrossRefGoogle Scholar
  6. 6.
    McDermott, J., Galván-Lopéz, E., O’Neill, M.: A fine-grained view of GP locality with binary decision diagrams as ant phenotypes. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 164–173. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15844-5_17 Google Scholar
  7. 7.
    Lohn, J., Hornby, G., Linden, D.: An evolved antenna for deployment on Nasa’s space technology 5 mission. In: O’Reilly, U.-M., Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice II, vol. 8, pp. 301–315. Springer, New York (2005). doi: 10.1007/0-387-23254-0_18 CrossRefGoogle Scholar
  8. 8.
    Galván-López, E., Swafford, J.M., O’Neill, M., Brabazon, A.: Evolving a Ms. PacMan controller using grammatical evolution. In: Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6024, pp. 161–170. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12239-2_17 CrossRefGoogle Scholar
  9. 9.
    Cody-Kenny, B., Galván-López, E., Barrett, S.: locoGP: improving performance by genetic programming java source code. In: Proceedings of the Companion Publication of the 2015 on Genetic and Evolutionary Computation Conference, GECCO Companion 2015, pp. 811–818. ACM, New York (2015). doi: 10.1145/2739482.2768419
  10. 10.
    Galván-López, E., Poli, R., Coello, C.A.C.: Reusing code in genetic programming. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 359–368. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24650-3_34 CrossRefGoogle Scholar
  11. 11.
    Galván-López, E.: Efficient graph-based genetic programming representation with multiple outputs. Int. J. Autom. Comput. 5(1), 81–89 (2008). doi: 10.1007/s11633-008-0081-4 CrossRefGoogle Scholar
  12. 12.
    Masters, G.M.: Renewable and Efficient Electric Power Systems. Wiley-Interscience, Hoboken (2004)CrossRefGoogle Scholar
  13. 13.
    Galván-López, E., Harris, C., Trujillo, L., Vázquez, K.R., Clarke, S., Cahill, V.: Autonomous demand-side management system based on Monte Carlo tree search. In: IEEE International Energy Conference (EnergyCon). IEEE Press, Dubrovnik, Croatia, pp. 1325–1332 (2014)Google Scholar
  14. 14.
    Pacific Northwest GridWise Testbed Demonstration Projects, Part I. Olympic Peninsula Project, October 2007Google Scholar
  15. 15.
    Galvan, E., Harris, C., Dusparic, I., Clarke, S., Cahill, V.: Reducing electricity costs in a dynamic pricing environment. In: Proceedings of Third IEEE International Conference on Smart Grid Communications (SmartGridComm). IEEE Press, Tainan, Taiwan, pp. 169–174 (2012)Google Scholar
  16. 16.
    Mohsenian-Rad, A., Wong, V., Jatskevich, J., Schober, R., Leon-Garcia, A.: Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans. Smart Grid 1(3), 320–331 (2010). doi: 10.1109/TSG.2010.2089069 CrossRefGoogle Scholar
  17. 17.
    Galván-López, E., Curran, T., McDermott, J., Carroll, P.: Design of an autonomous intelligent demand-side management system using stochastic optimisation evolutionary algorithms. Neurocomputing 170, 270–285 (2015). doi: 10.1016/j.neucom.2015.03.093. http://www.sciencedirect.com/science/article/pii/S0925231215009303
  18. 18.
    Kempton, W., Letendre, S.E.: Electric vehicles as a new power source for electric utilities. Transp. Res. Part D: Transp. Environ. 2(3), 157–175 (1997). doi: 10.1016/S1361-9209(97)00001-1
  19. 19.
    Kempton, W., Tomic, J.: Vehicle-to-grid power fundamentals: calculating capacity and net revenue. J. Power Sources 144(1), 268–279 (2005). doi: 10.1016/j.jpowsour.2004.12.025
  20. 20.
    Brooks, A., Lu, E., Reicher, D., Spirakis, C., Weihl, B.: Demand dispatch: using real-time control of demand to help balance generation and load. IEEE Power Energy Mag. 8, 20–29 (2010)CrossRefGoogle Scholar
  21. 21.
    Storn, R., Price, K.: Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4) 341–359 (1997). doi: 10.1023/A:1008202821328
  22. 22.
    Poli, R.: Analysis of the publications on the applications of particle swarm optimisation. J. Artif. Evol. Appl. 2008, 4:1–4:10 (2008). doi: 10.1155/2008/685175
  23. 23.
    Cheung, K., Cheung, S., Silva, R., Juvonen, M., Singh, R., Woo, J.: Large-Scale Energy Storage Systems ISE2. Imperial College London, London (2003)Google Scholar
  24. 24.
    Wang, Z., Gu, C., Li, F., Bale, P., Sun, H.: Active demand response using shared energy storage for household energy management. IEEE Trans. Smart Grid 4(4), 1888–1897 (2013). doi: 10.1109/TSG.2013.2258046 CrossRefGoogle Scholar
  25. 25.
    Eyer, J.M., Corey, G.P.: Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide. A study for the DOE Energy Storage Systems Program. Prepared by Sandia National LaboratoriesGoogle Scholar
  26. 26.
    Eyer, J.M., Iannucci, J.J., Corey, G.P.: Energy storage benefits, market analysis handbook: a study for the DOE Energy Storage Systems Program. Prepared by Sandia National LaboratoriesGoogle Scholar
  27. 27.
    Mohd, A., Ortjohann, E., Schmelter, A., Hamsic, N., Morton, D.: Challenges in integrating distributed energy storage systems into future smart grid. In: IEEE International Symposium on Industrial Electronics, 2008, ISIE 2008, pp. 1627–1632 (2008). doi: 10.1109/ISIE.2008.4676896
  28. 28.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)MATHGoogle Scholar
  29. 29.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)MATHGoogle Scholar
  30. 30.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. Trans. Evol. Comp. 13(2), 398–417 (2009). doi: 10.1109/TEVC.2008.927706 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Edgar Galván-López
    • 1
  • Marc Schoenauer
    • 2
  • Constantinos Patsakis
    • 3
  • Leonardo Trujillo
    • 4
  1. 1.School of Computer Science and StatisticsTrinity College DublinDublinIreland
  2. 2.TAO Project, INRIA Saclay & LRI - Univ. Paris-Sud and CNRSOrsayFrance
  3. 3.Department of InformaticsUniversity of PiraeusPiraeusGreece
  4. 4.Doctorado en Ciencias de la IngenieríaInstituto Tecnológico de TijuanaTijuanaMexico

Personalised recommendations