Tooth Segmentation from Cone Beam Computed Tomography Images Using the Identified Root Canal and Harmonic Fields

  • Shi-Jian Liu
  • Zheng ZouEmail author
  • Ye Liang
  • Jeng-Shyang Pan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 535)


In this paper, a novel method is introduced to segment tooth from Cone Beam Computed Tomography images. Different from traditional methods, the root canal centerline identified by graph theory based energy minimization problem is applied as prior knowledge aiding for the segmentation. Besides, though we use the idea of contour tracking strategy as adopted by most published methods based on slice-by-slice basis, within a slice, the segmentation is based on the harmonic field theory, which makes our method superior to the traditional ones. Effect and efficiency of ours are proved by the experiments.


Segmentation Root canal Cone Beam CT Harmonic field 


  1. 1.
    Abeysinghe, S.S., Baker, M., Chiu, W., Ju, T.: Segmentation-free skeletonization of grayscale volumes for shape understanding. In: IEEE International Conference on Shape Modeling and Applications, pp. 63–71, June 2008Google Scholar
  2. 2.
    Alvarez, L., Baumela, L., Henriquez, P., Marquez-Neila, P.: Morphological snakes. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2197–2202, June 2010Google Scholar
  3. 3.
    Alvarez, L., Baumela, L., Marquez-Neila, P., Henriquez, P.: A real time morphological snakes algorithm. Image Process. Online 2, 1–7 (2012)CrossRefGoogle Scholar
  4. 4.
    Barone, S., Paoli, A., Razionale, A.V., Savignano, R.: 3D reconstruction of individual tooth shapes by integrating dental cad templates and patient-specific anatomy. In: 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 79–87 (2014)Google Scholar
  5. 5.
    Boykov, Y., Jolly, M.-P.: Interactive organ segmentation using graph cuts. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 276–286. Springer, Heidelberg (2000). doi: 10.1007/978-3-540-40899-4_28 CrossRefGoogle Scholar
  6. 6.
    Buchaillard, S.I., Ong, S., Payan, Y., Foong, K.: 3D statistical models for tooth surface reconstruction. Comput. Biol. Med. 37(10), 1461–1471 (2007)CrossRefGoogle Scholar
  7. 7.
    Bulu, H., Alpkocak, A.: Comparison of 3D segmentation algorithms for medical imaging. In: Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, pp. 269–274 (2007)Google Scholar
  8. 8.
    Chung, G., Vese, L.A.: Image segmentation using a multilayer level-set approach. Comput. Vis. Sci. 12(6), 267–285 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Derraz, F., Beladgham, M., Khelif, M.: Application of active contour models in medical image segmentation. In: International Conference on Information Technology: Coding and Computing, vol. 2, pp. 675–681, April 2004Google Scholar
  10. 10.
    Gao, H., Chae, O.: Touching tooth segmentation from CT image sequences using coupled level set method. In: 5th International Conference on Visual Information Engineering, pp. 382–387, July 2008Google Scholar
  11. 11.
    Gao, H., Chae, O.: Individual tooth segmentation from CT images using level set method with shape and intensity prior. Pattern Recogn. 43(7), 2406–2417 (2010)CrossRefGoogle Scholar
  12. 12.
    Hosntalab, M., Aghaeizadeh Zoroofi, R., Abbaspour Tehrani-Fard, A., Shirani, G.: Segmentation of teeth in CT volumetric dataset by panoramic projection and variational level set. Int. J. Comput. Assist. Radiol. Surg. 3(3), 257–265 (2008)CrossRefGoogle Scholar
  13. 13.
    Ji, D.X., Ong, S.H., Foong, K.W.C.: A level-set based approach for anterior teeth segmentation in cone beam computed tomography images. Comput. Biol. Med. 50, 116–128 (2014)CrossRefGoogle Scholar
  14. 14.
    Liao, S.-H., Tong, R.-F., Dong, J.-X.: 3D whole tooth model from CT volume using thin-plate splines. In: International Conference on Computer Supported Cooperative Work in Design, vol. 1, pp. 600–604 (2005)Google Scholar
  15. 15.
    Liao, S.-H., Han, W., Tong, R.-F., Dong, J.-X.: A hybrid approach to extracting tooth models from CT volumes. In: Martin, R., Bez, H., Sabin, M. (eds.) IMA 2005. LNCS, vol. 3604, pp. 308–317. Springer, Heidelberg (2005). doi: 10.1007/11537908_18 CrossRefGoogle Scholar
  16. 16.
    Pavaloiu, I.B., Vasilateanu, A., Goga, N., Marin, I., Ilie, C., Ungar, A., Patracu, I.: 3D dental reconstruction from CBCT data. In: 2014 International Symposium on Fundamentals of Electrical Engineering, pp. 1–6, November 2014Google Scholar
  17. 17.
    Pohle, R., Toennies, K.D.: Segmentation of medical images using adaptive region growing (2001)Google Scholar
  18. 18.
    Schroeder, W., Martin, K.M., Lorensen, W.E.: The Visualization Toolkit, An Object-Oriented Approach To 3D Graphics (2006)Google Scholar
  19. 19.
    Verma, B., Sardana, H.K.: Real time image segmentation using watershed algorithm on FPGA. Int. J. Eng. Sci. Technol. 3(6), 4518–4522 (2011)Google Scholar
  20. 20.
    Zou, B.J., Liu, S.J., Liao, S.H., Ding, X., Liang, Y.: Interactive tooth partition of dental mesh base on tooth-target harmonic field. Comput. Biol. Med. 56(2015), 132–144 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Shi-Jian Liu
    • 1
    • 2
    • 3
  • Zheng Zou
    • 4
    Email author
  • Ye Liang
    • 5
  • Jeng-Shyang Pan
    • 1
    • 2
  1. 1.Shcool of Information Science and EngineeringFujian University of TechnologyFuzhouChina
  2. 2.Key Laboratory of Big Data Mining and Applications of Fujian ProvinceFuzhouChina
  3. 3.The Key Laboratory for Automotive Electronics and Electric Drive of Fujian ProvinceFuzhouChina
  4. 4.Shcool of Information Science and EngineeringCentral South UniversityChangshaChina
  5. 5.Department of StomatologyXiangya Hospital of Central South UniversityChangshaChina

Personalised recommendations