FuhSen: A Federated Hybrid Search Engine for Building a Knowledge Graph On-Demand (Short Paper)

  • Diego Collarana
  • Mikhail Galkin
  • Christoph Lange
  • Irlán Grangel-González
  • Maria-Esther Vidal
  • Sören Auer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10033)

Abstract

A vast amount of information about various types of entities is spread across the Web, e.g., people or organizations on the Social Web, product offers on the Deep Web or on the Dark Web. These data sources can comprise heterogeneous data and are equipped with different search capabilities e.g., Search API. End users such as investigators from law enforcement institutions searching for traces and connections of organized crime have to deal with these interoperability problems not only during search time but also while merging data collected from different sources. We devise FuhSen, a keyword-based federated engine that exploits the search capabilities of heterogeneous sources during query processing and generates knowledge graphs on-demand applying an RDF-Molecule integration approach in response to keyword-based queries. The resulting knowledge graph describes the semantics of entities collected from the integrated sources, as well as relationships among these entities. Furthermore, FuhSen utilizes ontologies to describe the available sources in terms of content and search capabilities and exploits this knowledge to select the sources relevant for answering a keyword-based query. We conducted a user evaluation where FuhSen is compared to traditional search engines. FuhSen semantic search capabilities allow users to complete search tasks that could not be accomplished with traditional Web search engines during the evaluation study.

Keywords

Knowledge graph RDF-Molecule Integration on demand RDF 

Notes

Acknowledgments

This work was funded by the German Ministry of Education and Research grant no. 13N13627.

References

  1. 1.
    Arenas, M., Gutierrez, C., Pérez, J.: Foundations of RDF databases. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 158–204. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03754-2_4 CrossRefGoogle Scholar
  2. 2.
    Auer, S., Bryl, V., Tramp, S. (eds.): Linked Open Data – Creating Knowledge Out of Interlinked Data. LNCS, vol. 8661. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Collarana, D., Lange, C., Auer, S.: FuhSen: a platform for federated, RDF based hybrid search. In: WWW Companion Volume (2016)Google Scholar
  4. 4.
    Ding, L., et al.: Tracking RDF graph provenance using RDF molecules. In: International Semantic Web Conference (Poster) (2005)Google Scholar
  5. 5.
    Fernández, J.D., Llaves, A., Corcho, O.: Efficient RDF interchange (ERI) format for RDF data streams. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8797, pp. 244–259. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-11915-1_16 Google Scholar
  6. 6.
    Gunaratna, K., Thirunarayan, K., Sheth, A., Cheng, G.: Gleaning types for literals in RDF triples with application to entity summarization. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 85–100. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-34129-3_6 CrossRefGoogle Scholar
  7. 7.
    Heath, T., Bizer, C.: Linked data: evolving the web into a global data space. In: Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers (2011)Google Scholar
  8. 8.
    Lewis, J.R.: IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int. J. Hum. Comput. Interact. 7(1), 57–78 (1995)CrossRefGoogle Scholar
  9. 9.
    Pirrò, G.: Explaining and suggesting relatedness in knowledge graphs. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 622–639. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25007-6_36 CrossRefGoogle Scholar
  10. 10.
    Schultz, A., et al.: LDIF-a framework for large-scale Linked Data integration. In: 21st International World Wide Web Conference (WWW: Developers Track), Lyon, France (2012)Google Scholar
  11. 11.
    Thalhammer, A., Stadtmüller, S.: SUMMA: a common API for linked data entity summaries. In: Cimiano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 430–446. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-19890-3_28 CrossRefGoogle Scholar
  12. 12.
    Usbeck, R., Ngomo, A.-C.N., Bühmann, L., Unger, C.: HAWK – hybrid question answering using linked data. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 353–368. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-18818-8_22 CrossRefGoogle Scholar
  13. 13.
    Volz, J., et al.: Silk - a link discovery framework for the web of data. In: Bizer, C., et al. (eds.) Proceedings of the WWW 2009 Workshop on Linked Data on the Web, LDOW 2009, vol. 538, Madrid, Spain, April 20, 2009. CEUR Workshop Proceedings. CEUR-WS.org (2009)
  14. 14.
    Xu, Y., Mease, D.: Evaluating web search using task completion time. In: SIGIR (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Diego Collarana
    • 1
    • 2
  • Mikhail Galkin
    • 1
    • 2
    • 3
  • Christoph Lange
    • 1
    • 2
  • Irlán Grangel-González
    • 1
    • 2
  • Maria-Esther Vidal
    • 1
    • 2
    • 4
  • Sören Auer
    • 1
    • 2
  1. 1.Enterprise Information Systems (EIS)University of BonnBonnGermany
  2. 2.Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS)Sankt AugustinGermany
  3. 3.ITMO UniversitySaint PetersburgRussia
  4. 4.Universidad Simón BolívarCaracasVenezuela

Personalised recommendations