A Generic Framework for Context-Aware Process Performance Analysis

  • Bart F. A. HompesEmail author
  • Joos C. A. M. Buijs
  • Wil M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10033)


Process mining combines model-based process analysis with data-driven analysis techniques. The role of process mining is to extract knowledge and gain insights from event logs. Most existing techniques focus on process discovery (the automated extraction of process models) and conformance checking (aligning observed and modeled behavior). Relatively little research has been performed on the analysis of business process performance. Cooperative business processes often exhibit a high degree of variability and depend on many factors. Finding root causes for inefficiencies such as delays and long waiting times in such flexible processes remains an interesting challenge. This paper introduces a novel approach to analyze key process performance indicators by considering the process context. A generic context-aware analysis framework is presented that analyzes performance characteristics from multiple perspectives. A statistical approach is then utilized to evaluate and find significant differences in the results. Insights obtained can be used for finding high-impact points for optimization, prediction, and monitoring. The practical relevance of the approach is shown in a case study using real-life data.


Process mining Performance analysis Context-aware Root cause analysis 


  1. 1.
    van der Aalst, W.M.P.: Business process simulation revisited. In: Barjis, J. (ed.) Enterprise and Organizational Modeling and Simulation. LNBIP, vol. 63, pp. 1–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisc. Rev. Data Mining Knowl. Disc. 2(2), 182–192 (2012)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)CrossRefGoogle Scholar
  5. 5.
    Bevacqua, A., Carnuccio, M., Folino, F., Guarascio, M., Pontieri, L.: A data-driven prediction framework for analyzing and monitoring business process performances. In: Hammoudi, S., Cordeiro, J., Maciaszek, L.A., Filipe, J. (eds.) Enterprise Information Systems. LNBIP, vol. 190, pp. 100–117. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Bolt, A., Sepúlveda, M.: Process remaining time prediction using query catalogs. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 54–65. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-06257-0_5 CrossRefGoogle Scholar
  7. 7.
    Jagadeesh Chandra Bose, R.P., Aalst, W.: Trace alignment in process mining: opportunities for process diagnostics. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 227–242. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15618-2_17 CrossRefGoogle Scholar
  8. 8.
    Box, G.E., Cox, D.R.: An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodological) 26(2), 211–252 (1964)MathSciNetzbMATHGoogle Scholar
  9. 9.
    da Cunha Mattos, T., Santoro, F.M., Revoredo, K., Nunes, V.T.: A formal representation for context-aware business processes. Comput. Ind. 65(8), 1193–1214 (2014)CrossRefGoogle Scholar
  10. 10.
    del-Río-Ortega, A., Resinas, M., Cabanillas, C., Cortés, A.R.: On the definition and design-time analysis of process performance indicators. Inf. Syst. 38(4), 470–490 (2013)CrossRefGoogle Scholar
  11. 11.
    van Dongen, B.F.: BPI challenge 2012 (2012).
  12. 12.
    Dongen, B.F., Crooy, R.A., Aalst, W.M.P.: Cycle time prediction: when will this case finally be finished? In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88871-0_22 CrossRefGoogle Scholar
  13. 13.
    Folino, F., Guarascio, M., Pontieri, L.: Context-aware predictions on business processes: an ensemble-based solution. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2012. LNCS (LNAI), vol. 7765, pp. 215–229. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37382-4_15 CrossRefGoogle Scholar
  14. 14.
    Francescomarino, C.D., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based predictive process monitoring. CoRR abs/1506.01428 (2015)Google Scholar
  15. 15.
    Ha, B.-H., Reijers, H.A., Bae, J., Bae, H.: An approximate analysis of expected cycle time in business process execution. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 65–74. Springer, Heidelberg (2006). doi: 10.1007/11837862_8 CrossRefGoogle Scholar
  16. 16.
    Hill, T., Lewicki, P.: Statistics: Methods and Applications: A Comprehensive Reference for Science, Industry, and Data Mining. StatSoft Inc., Tulsa (2006)Google Scholar
  17. 17.
    Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods. Wiley, New York (2014)zbMATHGoogle Scholar
  18. 18.
    de Leoni, M., van der Aalst, W.M.P.: Data-aware process mining: discovering decisions in processes using alignments. In: Shin, S.Y., Maldonado, J.C. (eds.) Proceedings of the 28th Annual ACM Symposium on Applied Computing (SAC 2013), Coimbra, Portugal, 18–22 March 2013, pp. 1454–1461. ACM (2013)Google Scholar
  19. 19.
    de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Inf. Syst. 56, 235–257 (2016)CrossRefGoogle Scholar
  20. 20.
    Maggi, F.M., Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-07881-6_31 Google Scholar
  21. 21.
    Marques de Sá, J.P.: Applied Statistics Using SPSS, STATISTICA, MATLAB and R. Springer, Heidelberg (2007)CrossRefzbMATHGoogle Scholar
  22. 22.
    Pravilovic, S., Appice, A., Malerba, D.: Process mining to forecast the future of running cases. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2013. LNCS (LNAI), vol. 8399, pp. 67–81. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-08407-7_5 Google Scholar
  23. 23.
    Razali, N.M., Wah, Y.B.: Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Analytics 2(1), 21–33 (2011)Google Scholar
  24. 24.
    Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45005-1_27 CrossRefGoogle Scholar
  25. 25.
    Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52(3/4), 591–611 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tukey, J.W.: Comparing individual means in the analysis of variance. Biometrics 5(2), 99–114 (1949)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Bart F. A. Hompes
    • 1
    • 2
    Email author
  • Joos C. A. M. Buijs
    • 1
  • Wil M. P. van der Aalst
    • 1
  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Philips ResearchEindhovenThe Netherlands

Personalised recommendations