Skip to main content

Overview and Sources of Reactive Oxygen Species (ROS) in the Reproductive System

  • Chapter
  • First Online:
Oxidative Stress in Human Reproduction

Abstract

Reactive oxygen species (ROS) are highly reactive molecules that are generated from oxygen metabolism. They can be free radicals or non-radicals. Free radicals are molecules that contain at least one unpaired valence electron at their outer shell, making them highly reactive and short lived [1]. Among all the ROS, superoxide anion (•O2 ), hydrogen peroxide (H2O2) and hydroxyl radicals (•OH) are the most known examples. Reactive nitrogen species (RNS), is the subclass of ROS that contain nitrogen compound [2]. Both ROS and RNS, when present in physiological amount, have important roles in normal cellular functions such as fighting against infection, regulating different intercellular signaling pathways and facilitating normal maturation and fertilization in reproductive systems [1, 3–7]. However, when ROS present in high concentration, overwhelming the antioxidant defense system, oxidative stress results, and this may lead to cellular dysfunction via lipid peroxidation, protein and DNA damages [8]. Due to such damaging effect on the cells, OS is related to many pathological conditions including infertility [3, 9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nunes-Silva A, Freitas-Lima L (2014) The association between physical exercise and Reactive Oxygen Species (ROS) production. J Sports Med Doping Stud 4(152):2161–0673.1000152

    Google Scholar 

  2. Doshi SB et al (2012) Role of reactive nitrogen species in male infertility. Reprod Biol Endocrinol 10(109):10.1186

    Google Scholar 

  3. Agarwal A, Gupta S, Sharma RK (2005) Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 3:28

    Article  PubMed  PubMed Central  Google Scholar 

  4. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    Article  CAS  PubMed  Google Scholar 

  5. Keisari Y, Braun L, Flescher E (1983) The oxidative burst and related phenomena in mouse macrophages elicited by different sterile inflammatory stimuli. Immunobiology 165(1):78–89

    Article  CAS  PubMed  Google Scholar 

  6. Wu G et al (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489–492

    CAS  PubMed  Google Scholar 

  7. Agarwal A et al (2014) Effect of oxidative stress on male reproduction. World J Mens Health 32(1):1–17

    Article  PubMed  PubMed Central  Google Scholar 

  8. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192(1):1–15

    Article  CAS  PubMed  Google Scholar 

  9. Agarwal A et al (2014) Mechanisms of oligozoospermia: an oxidative stress perspective. Syst Biol Reprod Med 60(4):206–216

    Article  PubMed  Google Scholar 

  10. Boveris A, Cadenas E, Stoppani A (1976) Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 156:435–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deby C, Goutier R (1990) New perspectives on the biochemistry of superoxide anion and the efficiency of superoxide dismutases. Biochem Pharmacol 39(3):399–405

    Article  CAS  PubMed  Google Scholar 

  12. Fridovich I (1978) The biology of oxygen radicals. Science 201(4359):875–880

    Article  CAS  PubMed  Google Scholar 

  13. Sen CK (2001) Antioxidant and redox regulation of cellular signaling: introduction. Med Sci Sports Exerc 33(3):368–370

    Article  CAS  PubMed  Google Scholar 

  14. Haber F, Weiss J (1932) Über die katalyse des hydroperoxydes. Naturwissenschaften 20(51):948–950

    Article  CAS  Google Scholar 

  15. Kehrer JP (2000) The Haber–Weiss reaction and mechanisms of toxicity. Toxicology 149(1):43–50

    Article  CAS  PubMed  Google Scholar 

  16. Fromm HJ, Hargrove MS (2012) Electron transport and oxidative phosphorylation. In: Essentials of biochemistry. Springer, New York. pp 223–238

    Google Scholar 

  17. Schneider CD, Oliveira AR (2004) Oxygen free radicals and exercise: mechanisms of synthesis and adaptation to the physical training. Rev Bras Med Esporte 10(4):308–313

    Article  Google Scholar 

  18. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cadenas E et al (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys 180(2):248–257

    Article  CAS  PubMed  Google Scholar 

  20. Fujii J, Iuchi Y, Okada F (2005) Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod Biol Endocrinol 3(1):43

    Article  PubMed  PubMed Central  Google Scholar 

  21. Agarwal A, Allamaneni SS (2004) Role of free radicals in female reproductive diseases and assisted reproduction. Reprod Biomed Online 9(3):338–347

    Article  CAS  PubMed  Google Scholar 

  22. Al Ghouleh I et al (2011) Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic Biol Med 51(7):1271–1288

    Article  CAS  PubMed  Google Scholar 

  23. Cantu-Medellin N, Kelley EE (2013) Xanthine oxidoreductase-catalyzed reactive species generation: a process in critical need of reevaluation. Redox Biol 1(1):353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mittal M et al (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20(7):1126–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen X et al (2008) Role of reactive oxygen species in tumor necrosis factor-alpha induced endothelial dysfunction. Curr Hypertens Rev 4(4):245–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ha YJ, Seul HJ, Lee JR (2011) Ligation of CD40 receptor in human B lymphocytes triggers the 5-lipoxygenase pathway to produce reactive oxygen species and activate p38 MAPK. Exp Mol Med 43(2):101–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Frey RS, Ushio–Fukai M, Malik AB (2009) NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid Redox Signal 11(4):791–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lander HM et al (1997) A molecular redox switch on p21ras structural basis for the nitric oxide-p21ras interaction. J Biol Chem 272(7):4323–4326

    Article  CAS  PubMed  Google Scholar 

  29. Nathan CF, Root R (1977) Hydrogen peroxide release from mouse peritoneal macrophages: dependence on sequential activation and triggering. J Exp Med 146(6):1648–1662

    Article  CAS  PubMed  Google Scholar 

  30. Agarwal A, Hamada A, Esteves SC (2012) Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol 9(12):678–690

    Article  PubMed  Google Scholar 

  31. Perry JM, Marletta MA (1998) Effects of transition metals on nitric oxide synthase catalysis. Proc Natl Acad Sci 95(19):11101–11106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Olas B, Wachowicz B (2007) Role of reactive nitrogen species in blood platelet functions. Platelets 18(8):555–565

    Article  CAS  PubMed  Google Scholar 

  34. Wang L et al (2012) Specific role of neutrophil inducible nitric oxide synthase in murine sepsis-induced lung injury in vivo. Shock 37(5):539–547

    Article  CAS  PubMed  Google Scholar 

  35. Rosselli M, Keller R, Dubey RK (1998) Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum Reprod Update 4(1):3–24

    Article  CAS  PubMed  Google Scholar 

  36. Musset B et al (2012) NOX5 in human spermatozoa expression, function, and regulation. J Biol Chem 287(12):9376–9388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Griveau JF, Le Lannou D (1997) Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl 20(2):61–69

    Article  CAS  PubMed  Google Scholar 

  38. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552(2):335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Attaran M et al (2000) The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int J Fertil Womens Med 45(5):314–320

    CAS  PubMed  Google Scholar 

  40. Gil-Guzman E et al (2001) Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum Reprod 16(9):1922–1930

    Article  CAS  PubMed  Google Scholar 

  41. Rengan AK et al (2012) An investigation of excess residual cytoplasm in human spermatozoa and its distinction from the cytoplasmic droplet. Reprod Biol Endocrinol 10:92

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gomez E et al (1996) Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: correlation with biochemical markers of the cytoplasmic space, oxidative stress, and sperm function. J Androl 17:276–287

    CAS  PubMed  Google Scholar 

  43. Said TM et al (2005) Impact of sperm morphology on DNA damage caused by oxidative stress induced by β-nicotinamide adenine dinucleotide phosphate. Fertil Steril 83(1):95–103

    Article  CAS  PubMed  Google Scholar 

  44. Aziz N et al (2004) Novel association between sperm reactive oxygen species production, sperm morphological defects, and the sperm deformity index. Fertil Steril 81(2):349–354

    Article  CAS  PubMed  Google Scholar 

  45. Ford WC, Whittington K, Williams AC (1997) Reactive oxygen species in human sperm suspensions: production by leukocytes and the generation of NADPH to protect sperm against their effects. Int J Androl 20(Suppl 3):44–49

    CAS  PubMed  Google Scholar 

  46. Oborna I et al (2009) Reactive oxygen species in human semen in relation to leukocyte contamination. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 153(1):53–57

    Article  CAS  PubMed  Google Scholar 

  47. Lavranos G et al (2012) Investigating ROS sources in male infertility: a common end for numerous pathways. Reprod Toxicol 34(3):298–307

    Article  CAS  PubMed  Google Scholar 

  48. Shang Y et al (2014) The effect of chronic bacterial prostatitis on semen quality in adult men: a meta-analysis of case-control studies. Sci Rep 4:7233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dinesh V, Shamsi M, Dada R (2012) Supraphysiological free radical levels and their pathogenesis in male infertility. Reprod Sys Sexual Disorders 1(114):2

    Google Scholar 

  50. Behrman HR et al (2001) Oxidative stress and the ovary. J Soc Gynecol Investig 8(1 Suppl):S40–S42

    CAS  PubMed  Google Scholar 

  51. Aitken RJ, Buckingham D, Harkiss D (1993) Use of a xanthine oxidase free radical generating system to investigate the cytotoxic effects of reactive oxygen species on human spermatozoa. J Reprod Fertil 97(2):441–450

    Article  CAS  PubMed  Google Scholar 

  52. Sugino N et al (1993) Changes in activities of superoxide dismutase and lipid peroxide in corpus luteum during pregnancy in rats. J Reprod Fertil 97(2):347–351

    Article  CAS  PubMed  Google Scholar 

  53. Devine PJ, Perreault SD, Luderer U (2012) Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod 86(2):27

    Article  PubMed  Google Scholar 

  54. Agarwal A et al (2012) The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 10:49

    Article  PubMed  PubMed Central  Google Scholar 

  55. Catt JW, Henman M (2000) Toxic effects of oxygen on human embryo development. Hum Reprod 15(Suppl 2):199–206

    Article  PubMed  Google Scholar 

  56. Burton GJ, Jauniaux E (2011) Oxidative stress. Best Pract Res Clin Obstet Gynaecol 25(3):287–299

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tamura H et al (2008) Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res 44(3):280–287

    Article  CAS  PubMed  Google Scholar 

  58. Seino T et al (2002) Eight-hydroxy-2′-deoxyguanosine in granulosa cells is correlated with the quality of oocytes and embryos in an in vitro fertilization-embryo transfer program. Fertil Steril 77(6):1184–1190

    Article  PubMed  Google Scholar 

  59. Ruder EH, Hartman TJ, Goldman MB (2009) Impact of oxidative stress on female fertility. Curr Opin Obstet Gynecol 21(3):219

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pasqualotto EB et al (2004) Effect of oxidative stress in follicular fluid on the outcome of assisted reproductive procedures. Fertil Steril 81(4):973–976

    Article  CAS  PubMed  Google Scholar 

  61. Bedaiwy MA et al (2012) Effect of follicular fluid oxidative stress parameters on intracytoplasmic sperm injection outcome. Gynecol Endocrinol 28(1):51–55

    Article  CAS  PubMed  Google Scholar 

  62. Ekerhovd E, Norström A (2004) Involvement of a nitric oxide-cyclic guanosine monophosphate pathway in control of fallopian tube contractility. Gynecol Endocrinol 19(5):239–246

    Article  CAS  PubMed  Google Scholar 

  63. Agarwal A, Durairajanayagam D, du Plessis SS (2014) Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reprod Biol Endocrinol 12:112

    Article  PubMed  PubMed Central  Google Scholar 

  64. Agarwal A, Saleh RA, Bedaiwy MA (2003) Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 79(4):829–843

    Article  PubMed  Google Scholar 

  65. Das S et al (2006) Reactive oxygen species level in follicular fluid—embryo quality marker in IVF? Hum Reprod 21(9):2403–2407

    Article  CAS  PubMed  Google Scholar 

  66. Oyawoye O et al (2003) Antioxidants and reactive oxygen species in follicular fluid of women undergoing IVF: relationship to outcome. Hum Reprod 18(11):2270–2274

    Article  CAS  PubMed  Google Scholar 

  67. Salmon AB, Richardson A, Pérez VI (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 48(5):642–655

    Article  CAS  PubMed  Google Scholar 

  68. Shkolnik K et al (2011) Reactive oxygen species are indispensable in ovulation. Proc Natl Acad Sci 108(4):1462–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sugino N et al (1996) Changes in activity of superoxide dismutase in the human endometrium throughout the menstrual cycle and in early pregnancy. Hum Reprod 11(5):1073–1078

    Article  CAS  PubMed  Google Scholar 

  70. Paszkowski T et al (1995) Selenium dependent glutathione peroxidase activity in human follicular fluid. Clin Chim Acta 236(2):173–180

    Article  CAS  PubMed  Google Scholar 

  71. Jozwik M et al (1999) Oxidative stress markers in preovulatory follicular fluid in humans. Mol Hum Reprod 5(5):409–413

    Article  CAS  PubMed  Google Scholar 

  72. Sugino N et al (2004) Withdrawal of ovarian steroids stimulates prostaglandin F2alpha production through nuclear factor-kappaB activation via oxygen radicals in human endometrial stromal cells: potential relevance to menstruation. J Reprod Dev 50(2):215–225

    Article  CAS  PubMed  Google Scholar 

  73. Wu B et al (2014) ROS are critical for endometrial breakdown via NF-κB–COX-2 signaling in a female mouse menstrual-like model. Endocrinology 155(9):3638–3648

    Article  PubMed  Google Scholar 

  74. Willie A (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  Google Scholar 

  75. Slater AF et al (1995) Signalling mechanisms and oxidative stress in apoptosis. Toxicol Lett 82:149–153

    Article  PubMed  Google Scholar 

  76. Wathes DC, Abayasekara DRE, Aitken RJ (2007) Polyunsaturated fatty acids in male and female reproduction. Biol Reprod 77(2):190–201

    Article  CAS  PubMed  Google Scholar 

  77. Quinlan GJ, Martin GS, Evans TW (2005) Albumin: biochemical properties and therapeutic potential. Hepatology 41(6):1211–1219

    Article  CAS  PubMed  Google Scholar 

  78. Van Campenhout A et al (2005) Cell-mediated LDL oxidation: the impact of transition metals and transferrin. Biochem Biophys Res Commun 338(3):1617–1624

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulfam Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ahmad, G., Almasry, M., Dhillon, A.S., Abuayyash, M.M., Kothandaraman, N., Cakar, Z. (2017). Overview and Sources of Reactive Oxygen Species (ROS) in the Reproductive System. In: Agarwal, A., et al. Oxidative Stress in Human Reproduction. Springer, Cham. https://doi.org/10.1007/978-3-319-48427-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48427-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48425-9

  • Online ISBN: 978-3-319-48427-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics