What Is Lipotoxicity?

  • Ayse Basak EnginEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 960)


Enlarged fat cells in obese adipose tissue diminish capacity to store fat and are resistant to the anti-lipolytic effect of insulin. Insulin resistance (IR)-associated S-nitrosylation of insulin-signaling proteins increases in obesity. In accordance with the inhibition of insulin-mediated anti-lipolytic action, plasma free fatty acid (FFA) levels increase. Additionally, endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate/Protein kinase A (cAMP/PKA) and extracellular signal-regulated kinase ½ (ERK1/2) signaling in adipocytes. Failure of packaging of excess lipid into lipid droplets causes chronic elevation of circulating fatty acids, which can reach to toxic levels within non-adipose tissues. Deleterious effects of lipid accumulation in non-adipose tissues are known as lipotoxicity. In fact, triglycerides may also serve a storage function for long-chain non-esterified fatty acids and their products such as ceramides and diacylglycerols (DAGs). Thus, excess DAG, ceramide and saturated fatty acids in obesity can induce chronic inflammation and have harmful effect on multiple organs and systems. In this context, chronic adipose tissue inflammation, mitochondrial dysfunction and IR have been discussed within the scope of lipotoxicity.


Obesity Lipotoxicity Lipolysis Free fatty acid (FFA) Fatty acyl-coenzyme A (FA-CoA) Diacylglycerol (DAG) Ceramide Perilipin Triglyceride Fatty acid translocase (FAT)/CD36 Long-chain fatty acid (LCFA) Plasma membrane-associated fatty acid binding protein (FABPpm) Triacylglycerol Insulin resistance (IR) Mitochondrial dysfunction Lipid droplets Reactive oxygen species (ROS) 


  1. Abdul-Ghani, M.A., F.L. Muller, Y. Liu, A.O. Chavez, B. Balas, P. Zuo, Z. Chang, D. Tripathy, R. Jani, M. Molina-Carrion, A. Monroy, F. Folli, H. Van Remmen, and R.A. DeFronzo. 2008. Deleterious action of FA metabolites on ATP synthesis: Possible link between lipotoxicity, mitochondrial dysfunction, and insulin resistance. American Journal of Physiology. Endocrinology and Metabolism 295: E678–E685. doi: 10.1152/ajpendo.90287.2008.PubMedCrossRefGoogle Scholar
  2. An, J., D.M. Muoio, M. Shiota, Y. Fujimoto, G.W. Cline, G.I. Shulman, T.R. Koves, R. Stevens, D. Millington, and C.B. Newgard. 2004. Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nature Medicine 10: 268–274. doi: 10.1038/nm995.PubMedCrossRefGoogle Scholar
  3. Angulo, P. 2007. Obesity and nonalcoholic fatty liver disease. Nutrition Reviews 65: S57–S63.PubMedCrossRefGoogle Scholar
  4. Aon, M.A., N. Bhatt, and S.C. Cortassa. 2014. Mitochondrial and cellular mechanisms for managing lipid excess. Frontiers in Physiology 5: 282. doi: 10.3389/fphys.2014.00282.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Belfort, R., L. Mandarino, S. Kashyap, K. Wirfel, T. Pratipanawatr, R. Berria, R.A. Defronzo, and K. Cusi. 2005. Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes 54: 1640–1648.PubMedCrossRefGoogle Scholar
  6. Bellini, L., M. Campana, R. Mahfouz, A. Carlier, J. Véret, C. Magnan, E. Hajduch, and H. Le Stunff. 2015. Targeting sphingolipid metabolism in the treatment of obesity/type 2 diabetes. Expert Opinion on Therapeutic Targets 19: 1037–1050. doi: 10.1517/14728222.2015.1028359.PubMedCrossRefGoogle Scholar
  7. Boden, G. 2008. Obesity and free fatty acids. Endocrinology and Metabolism Clinics of North America 37: 635–646 . doi: 10.1016/j.ecl.2008.06.007. viii–ixPubMedPubMedCentralCrossRefGoogle Scholar
  8. Boden, G., and X. Chen. 1995. Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes. The Journal of Clinical Investigation 96: 1261–1268. doi: 10.1172/JCI118160.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Boden, G., P. She, M. Mozzoli, P. Cheung, K. Gumireddy, P. Reddy, X. Xiang, Z. Luo, and N. Ruderman. 2005. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes 54: 3458–3465.PubMedCrossRefGoogle Scholar
  10. Bonen, A., J.J. Luiken, Y. Arumugam, J.F. Glatz, and N.N. Tandon. 2000. Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. The Journal of Biological Chemistry 275: 14501–14508.PubMedCrossRefGoogle Scholar
  11. Bonen, A., M.L. Parolin, G.R. Steinberg, J. Calles-Escandon, N.N. Tandon, J.F.C. Glatz, J.J.F.P. Luiken, G.J.F. Heigenhauser, and D.J. Dyck. 2004. Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB Journal 18: 1144–1146. doi: 10.1096/fj.03-1065fje.PubMedGoogle Scholar
  12. Borradaile, N.M., X. Han, J.D. Harp, S.E. Gale, D.S. Ory, and J.E. Schaffer. 2006. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. Journal of Lipid Research 47: 2726–2737. doi: 10.1194/jlr.M600299-JLR200.PubMedCrossRefGoogle Scholar
  13. Bosma, M., D.H. Dapito, Z. Drosatos-Tampakaki, N. Huiping-Son, L.-S. Huang, S. Kersten, K. Drosatos, and I.J. Goldberg. 2014. Sequestration of fatty acids in triglycerides prevents endoplasmic reticulum stress in an in vitro model of cardiomyocyte lipotoxicity. Biochimica et Biophysica Acta 1841: 1648–1655. doi: 10.1016/j.bbalip.2014.09.012.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brand, M.D., and T.C. Esteves. 2005. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metabolism 2: 85–93. doi: 10.1016/j.cmet.2005.06.002.PubMedCrossRefGoogle Scholar
  15. Brasaemle, D.L. 2007. Thematic review series: Adipocyte biology. The perilipin family of structural lipid droplet proteins: Stabilization of lipid droplets and control of lipolysis. Journal of Lipid Research 48: 2547–2559. doi: 10.1194/jlr.R700014-JLR200.PubMedCrossRefGoogle Scholar
  16. Brookheart, R.T., C.I. Michel, and J.E. Schaffer. 2009. As a matter of fat. Cell Metabolism 10: 9–12. doi: 10.1016/j.cmet.2009.03.011.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brown, M.S., and J.L. Goldstein. 1997. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89: 331–340.PubMedCrossRefGoogle Scholar
  18. ———. 2009. Cholesterol feedback: From Schoenheimer’s bottle to Scap’s MELADL. Journal of Lipid Research 50(Suppl): S15–S27. doi: 10.1194/jlr.R800054-JLR200.PubMedPubMedCentralGoogle Scholar
  19. Cai, D., M. Yuan, D.F. Frantz, P.A. Melendez, L. Hansen, J. Lee, and S.E. Shoelson. 2005. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nature Medicine 11: 183–190. doi: 10.1038/nm1166.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Campbell, F.M., R. Kozak, A. Wagner, J.Y. Altarejos, J.R.B. Dyck, D.D. Belke, D.L. Severson, D.P. Kelly, and G.D. Lopaschuk. 2002. A role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the control of cardiac malonyl-CoA levels: Reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. The Journal of Biological Chemistry 277: 4098–4103. doi: 10.1074/jbc.M106054200.PubMedCrossRefGoogle Scholar
  21. Campbell, S.E., N.N. Tandon, G. Woldegiorgis, J.J.F.P. Luiken, J.F.C. Glatz, and A. Bonen. 2004. A novel function for fatty acid translocase (FAT)/CD36: Involvement in long chain fatty acid transfer into the mitochondria. The Journal of Biological Chemistry 279: 36235–36241. doi: 10.1074/jbc.M400566200.PubMedCrossRefGoogle Scholar
  22. Carobbio, S., R.M. Hagen, C.J. Lelliott, M. Slawik, G. Medina-Gomez, C.-Y. Tan, A. Sicard, H.J. Atherton, N. Barbarroja, M. Bjursell, M. Bohlooly-Y, S. Virtue, A. Tuthill, E. Lefai, M. Laville, T. Wu, R.V. Considine, H. Vidal, D. Langin, M. Oresic, F.J. Tinahones, J.M. Fernandez-Real, J.L. Griffin, J.K. Sethi, M. López, and A. Vidal-Puig. 2013. Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity. Diabetes 62: 3697–3708. doi: 10.2337/db12-1748.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Carpentier, A., S.D. Mittelman, R.N. Bergman, A. Giacca, and G.F. Lewis. 2000. Prolonged elevation of plasma free fatty acids impairs pancreatic beta-cell function in obese nondiabetic humans but not in individuals with type 2 diabetes. Diabetes 49: 399–408.PubMedCrossRefGoogle Scholar
  24. Chabowski, A., S.L.M. Coort, J. Calles-Escandon, N.N. Tandon, J.F.C. Glatz, J.J.F.P. Luiken, and A. Bonen. 2004. Insulin stimulates fatty acid transport by regulating expression of FAT/CD36 but not FABPpm. American Journal of Physiology. Endocrinology and Metabolism 287: E781–E789. doi: 10.1152/ajpendo.00573.2003.PubMedCrossRefGoogle Scholar
  25. Chabowski, A., J. Górski, J.J.F.P. Luiken, J.F.C. Glatz, and A. Bonen. 2007. Evidence for concerted action of FAT/CD36 and FABPpm to increase fatty acid transport across the plasma membrane. Prostaglandins Leukot Essent Fatty Acids 77: 345–353.PubMedCrossRefGoogle Scholar
  26. Chavez, J.A., T.A. Knotts, L.-P. Wang, G. Li, R.T. Dobrowsky, G.L. Florant, and S.A. Summers. 2003. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. The Journal of Biological Chemistry 278: 10297–10303. doi: 10.1074/jbc.M212307200.PubMedCrossRefGoogle Scholar
  27. Civelek, V.N., J.A. Hamilton, K. Tornheim, K.L. Kelly, and B.E. Corkey. 1996. Intracellular pH in adipocytes: Effects of free fatty acid diffusion across the plasma membrane, lipolytic agonists, and insulin. Proceedings of the National Academy of Sciences of the United States of America 93: 10139–10144.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Clarke, D.C., D. Miskovic, X.-X. Han, J. Calles-Escandon, J.F.C. Glatz, J.J.F.P. Luiken, J.J. Heikkila, and A. Bonen. 2004. Overexpression of membrane-associated fatty acid binding protein (FABPpm) in vivo increases fatty acid sarcolemmal transport and metabolism. Physiological Genomics 17: 31–37. doi: 10.1152/physiolgenomics.00190.2003.PubMedCrossRefGoogle Scholar
  29. Cooney, G.J., A.L. Thompson, S.M. Furler, J. Ye, and E.W. Kraegen. 2002. Muscle long-chain acyl CoA esters and insulin resistance. Annals of the New York Academy of Sciences 967: 196–207.PubMedCrossRefGoogle Scholar
  30. Copps, K.D., and M.F. White. 2012. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55: 2565–2582. doi: 10.1007/s00125-012-2644-8.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Creager, M.A., T.F. Lüscher, F. Cosentino, and J.A. Beckman. 2003. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 108: 1527–1532. doi: 10.1161/01.CIR.0000091257.27563.32.PubMedCrossRefGoogle Scholar
  32. Crompton, M. 1999. The mitochondrial permeability transition pore and its role in cell death. The Biochemical Journal 341(Pt 2): 233–249.PubMedPubMedCentralCrossRefGoogle Scholar
  33. DeFronzo, R.A. 2004. Dysfunctional fat cells, lipotoxicity and type 2 diabetes. International Journal of Clinical Practice Supplement: 9–21.Google Scholar
  34. Deng, J., S. Liu, L. Zou, C. Xu, B. Geng, and G. Xu. 2012. Lipolysis response to endoplasmic reticulum stress in adipose cells. The Journal of Biological Chemistry 287: 6240–6249. doi: 10.1074/jbc.M111.299115.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Diehl, A.M. 2002. Nonalcoholic steatosis and steatohepatitis IV. Nonalcoholic fatty liver disease abnormalities in macrophage function and cytokines. American Journal of Physiology. Gastrointestinal and Liver Physiology 282: G1–G5. doi: 10.1152/ajpgi.00384.2001.PubMedCrossRefGoogle Scholar
  36. Digel, M., R. Ehehalt, W. Stremmel, and J. Füllekrug. 2009. Acyl-CoA synthetases: Fatty acid uptake and metabolic channeling. Molecular and Cellular Biochemistry 326: 23–28. doi: 10.1007/s11010-008-0003-3.PubMedCrossRefGoogle Scholar
  37. Divakaruni, A.S., and M.D. Brand. 2011. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda) 26: 192–205. doi: 10.1152/physiol.00046.2010.CrossRefGoogle Scholar
  38. Divakaruni, A.S., D.M. Humphrey, and M.D. Brand. 2012. Fatty acids change the conformation of uncoupling protein 1 (UCP1). The Journal of Biological Chemistry 287: 36845–36853. doi: 10.1074/jbc.M112.381780.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dresner, A., D. Laurent, M. Marcucci, M.E. Griffin, S. Dufour, G.W. Cline, L.A. Slezak, D.K. Andersen, R.S. Hundal, D.L. Rothman, K.F. Petersen, and G.I. Shulman. 1999. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. The Journal of Clinical Investigation 103: 253–259. doi: 10.1172/JCI5001.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Egnatchik, R.A., A.K. Leamy, Y. Noguchi, M. Shiota, and J.D. Young. 2014. Palmitate-induced activation of mitochondrial metabolism promotes oxidative stress and apoptosis in H4IIEC3 rat hepatocytes. Metabolism 63: 283–295. doi: 10.1016/j.metabol.2013.10.009.PubMedCrossRefGoogle Scholar
  41. Elam, M.B., C. Yellaturu, G.E. Howell, X. Deng, G.S. Cowan, P. Kumar, E.A. Park, M.L. Hiler, H.G. Wilcox, T.A. Hughes, G.A. Cook, and R. Raghow. 2010. Dysregulation of sterol regulatory element binding protein-1c in livers of morbidly obese women is associated with altered suppressor of cytokine signaling-3 and signal transducer and activator of transcription-1 signaling. Metabolism 59: 587–598. doi: 10.1016/j.metabol.2009.09.001.PubMedCrossRefGoogle Scholar
  42. Emanuelli, B., P. Peraldi, C. Filloux, C. Chavey, K. Freidinger, D.J. Hilton, G.S. Hotamisligil, and E. Van Obberghen. 2001. SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. The Journal of Biological Chemistry 276: 47944–47949. doi: 10.1074/jbc.M104602200.PubMedCrossRefGoogle Scholar
  43. Erikci Ertunc, M., and G.S. Hotamisligil. 2016. Lipid signaling and lipotoxicity in metabolic inflammation: Indications for metabolic disease pathogenesis and treatment. Journal of Lipid Research. doi: 10.1194/jlr.R066514.Google Scholar
  44. Espinosa, A., A. García, S. Härtel, C. Hidalgo, and E. Jaimovich. 2009. NADPH oxidase and hydrogen peroxide mediate insulin-induced calcium increase in skeletal muscle cells. The Journal of Biological Chemistry 284: 2568–2575. doi: 10.1074/jbc.M804249200.PubMedCrossRefGoogle Scholar
  45. Esser, N., S. Legrand-Poels, J. Piette, A.J. Scheen, and N. Paquot. 2014. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Research and Clinical Practice 105: 141–150. doi: 10.1016/j.diabres.2014.04.006.PubMedCrossRefGoogle Scholar
  46. Fang, X., R. Palanivel, J. Cresser, K. Schram, R. Ganguly, F.S.L. Thong, J. Tuinei, A. Xu, E.D. Abel, and G. Sweeney. 2010. An APPL1-AMPK signaling axis mediates beneficial metabolic effects of adiponectin in the heart. American Journal of Physiology. Endocrinology and Metabolism 299: E721–E729. doi: 10.1152/ajpendo.00086.2010.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gallardo, N., E. Bonzón-Kulichenko, T. Fernández-Agulló, E. Moltó, S. Gómez-Alonso, P. Blanco, J.M. Carrascosa, M. Ros, and A. Andrés. 2007. Tissue-specific effects of central leptin on the expression of genes involved in lipid metabolism in liver and white adipose tissue. Endocrinology 148: 5604–5610. doi: 10.1210/en.2007-0933.PubMedCrossRefGoogle Scholar
  48. Gao, X., K. Li, X. Hui, X. Kong, G. Sweeney, Y. Wang, A. Xu, M. Teng, P. Liu, and D. Wu. 2011. Carnitine palmitoyltransferase 1A prevents fatty acid-induced adipocyte dysfunction through suppression of c-Jun N-terminal kinase. The Biochemical Journal 435: 723–732. doi: 10.1042/BJ20101680.PubMedCrossRefGoogle Scholar
  49. Garin-Shkolnik, T., A. Rudich, G.S. Hotamisligil, and M. Rubinstein. 2014. FABP4 attenuates PPARγ and adipogenesis and is inversely correlated with PPARγ in adipose tissues. Diabetes 63: 900–911. doi: 10.2337/db13-0436.PubMedCrossRefGoogle Scholar
  50. Garland, P.B., P.J. Randle, and E.A. Newsholme. 1963. Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes, and starvation. Nature 200: 169–170.PubMedCrossRefGoogle Scholar
  51. Goglia, F., and V.P. Skulachev. 2003. A function for novel uncoupling proteins: Antioxidant defense of mitochondrial matrix by translocating fatty acid peroxides from the inner to the outer membrane leaflet. FASEB Journal 17: 1585–1591. doi: 10.1096/fj.03-0159hyp.PubMedCrossRefGoogle Scholar
  52. Hajduch, E., A. Balendran, I.H. Batty, G.J. Litherland, A.S. Blair, C.P. Downes, and H.S. Hundal. 2001. Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells. Diabetologia 44: 173–183. doi: 10.1007/s001250051596.PubMedCrossRefGoogle Scholar
  53. Hegarty, B.D., S.M. Furler, J. Ye, G.J. Cooney, and E.W. Kraegen. 2003. The role of intramuscular lipid in insulin resistance. Acta Physiologica Scandinavica 178: 373–383. doi: 10.1046/j.1365-201X.2003.01162.x.PubMedCrossRefGoogle Scholar
  54. Heilbronn, L., S.R. Smith, and E. Ravussin. 2004. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. International Journal of Obesity 28(Suppl 4): S12–S21. doi: 10.1038/sj.ijo.0802853.PubMedCrossRefGoogle Scholar
  55. van Herpen, N.A., and V.B. Schrauwen-Hinderling. 2008. Lipid accumulation in non-adipose tissue and lipotoxicity. Physiology & Behavior 94: 231–241. doi: 10.1016/j.physbeh.2007.11.049.CrossRefGoogle Scholar
  56. Hirabara, S.M., R. Curi, P. Maechler. 2010. Saturated fatty acid-induced insulin resistance is associated with mitochondrial dysfunction in skeletal muscle cells. Journal of Cellular Physiology 222: 187–194. doi:10.1002/jcp.21936Google Scholar
  57. Hoeks, J., M.K.C. Hesselink, and P. Schrauwen. 2006. Involvement of UCP3 in mild uncoupling and lipotoxicity. Experimental Gerontology 41: 658–662. doi: 10.1016/j.exger.2006.02.005.PubMedCrossRefGoogle Scholar
  58. Holland, W.L., J.T. Brozinick, L.-P. Wang, E.D. Hawkins, K.M. Sargent, Y. Liu, K. Narra, K.L. Hoehn, T.A. Knotts, A. Siesky, D.H. Nelson, S.K. Karathanasis, G.K. Fontenot, M.J. Birnbaum, and S.A. Summers. 2007. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metabolism 5: 167–179. doi: 10.1016/j.cmet.2007.01.002.PubMedCrossRefGoogle Scholar
  59. Holloway, G.P., A. Bonen, and L.L. Spriet. 2009. Regulation of skeletal muscle mitochondrial fatty acid metabolism in lean and obese individuals. The American Journal of Clinical Nutrition 89: 455S–462S. doi: 10.3945/ajcn.2008.26717B.PubMedCrossRefGoogle Scholar
  60. Holloway, G.P., J. Lally, J.G. Nickerson, H. Alkhateeb, L.A. Snook, G.J.F. Heigenhauser, J. Calles-Escandon, J.F.C. Glatz, J.J.F.P. Luiken, L.L. Spriet, and A. Bonen. 2007. Fatty acid binding protein facilitates sarcolemmal fatty acid transport but not mitochondrial oxidation in rat and human skeletal muscle. The Journal of Physiology 582: 393–405. doi: 10.1113/jphysiol.2007.135301.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Horton, J.D., J.L. Goldstein, and M.S. Brown. 2002. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. The Journal of Clinical Investigation 109: 1125–1131. doi: 10.1172/JCI15593.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hotamisligil, G.S. 2005. Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes 54(Suppl 2): S73–S78.PubMedCrossRefGoogle Scholar
  63. Hue, L., and H. Taegtmeyer. 2009. The Randle cycle revisited: A new head for an old hat. American Journal of Physiology. Endocrinology and Metabolism 297: E578–E591. doi: 10.1152/ajpendo.00093.2009.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Inoguchi, T., P. Li, F. Umeda, H.Y. Yu, M. Kakimoto, M. Imamura, T. Aoki, T. Etoh, T. Hashimoto, M. Naruse, H. Sano, H. Utsumi, and H. Nawata. 2000. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49: 1939–1945.PubMedCrossRefGoogle Scholar
  65. Ishii, M., A. Maeda, S. Tani, and M. Akagawa. 2015. Palmitate induces insulin resistance in human HepG2 hepatocytes by enhancing ubiquitination and proteasomal degradation of key insulin signaling molecules. Archives of Biochemistry and Biophysics 566: 26–35. doi: 10.1016/ Scholar
  66. Jacob, S. 1987. Lipid droplet accumulation in the heart during fasting. Acta Histochemica 82: 149–152. doi: 10.1016/S0065-1281(87)80020-X.PubMedCrossRefGoogle Scholar
  67. Jaishy, B., Q. Zhang, H.S. Chung, C. Riehle, J. Soto, S. Jenkins, P. Abel, L.A. Cowart, J.E. Van Eyk, and E.D. Abel. 2015. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity. Journal of Lipid Research 56: 546–561. doi: 10.1194/jlr.M055152.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Jaiswal, A.K. 2004. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radical Biology & Medicine 36: 1199–1207. doi: 10.1016/j.freeradbiomed.2004.02.074.CrossRefGoogle Scholar
  69. Jensen, M.D., M.W. Haymond, R.A. Rizza, P.E. Cryer, and J.M. Miles. 1989. Influence of body fat distribution on free fatty acid metabolism in obesity. The Journal of Clinical Investigation 83: 1168–1173. doi: 10.1172/JCI113997.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kelley, D.E., and J.A. Simoneau. 1994. Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus. The Journal of Clinical Investigation 94: 2349–2356. doi: 10.1172/JCI117600.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kerner, J., and C. Hoppel. 2000. Fatty acid import into mitochondria. Biochimica et Biophysica Acta 1486: 1–17.PubMedCrossRefGoogle Scholar
  72. Koonen, D.P.Y., J.F.C. Glatz, A. Bonen, and J.J.F.P. Luiken. 2005. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochimica et Biophysica Acta 1736: 163–180. doi: 10.1016/j.bbalip.2005.08.018.PubMedCrossRefGoogle Scholar
  73. Korshunov, S.S., O.V. Korkina, E.K. Ruuge, V.P. Skulachev, and A.A. Starkov. 1998. Fatty acids as natural uncouplers preventing generation of O2.- and H2O2 by mitochondria in the resting state. FEBS Letters 435: 215–218.PubMedCrossRefGoogle Scholar
  74. Koutsari, C., and M.D. Jensen. 2006. Thematic review series: Patient-oriented research. Free fatty acid metabolism in human obesity. Journal of Lipid Research 47: 1643–1650. doi: 10.1194/jlr.R600011-JLR200.PubMedCrossRefGoogle Scholar
  75. Koves, T.R., J.R. Ussher, R.C. Noland, D. Slentz, M. Mosedale, O. Ilkayeva, J. Bain, R. Stevens, J.R.B. Dyck, C.B. Newgard, G.D. Lopaschuk, and D.M. Muoio. 2008. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metabolism 7: 45–56. doi: 10.1016/j.cmet.2007.10.013.PubMedCrossRefGoogle Scholar
  76. Kovsan, J., R. Ben-Romano, S.C. Souza, A.S. Greenberg, and A. Rudich. 2007. Regulation of adipocyte lipolysis by degradation of the perilipin protein: Nelfinavir enhances lysosome-mediated perilipin proteolysis. The Journal of Biological Chemistry 282: 21704–21711. doi: 10.1074/jbc.M702223200.PubMedCrossRefGoogle Scholar
  77. Kroemer, G., L. Galluzzi, and C. Brenner. 2007. Mitochondrial membrane permeabilization in cell death. Physiological Reviews 87: 99–163. doi: 10.1152/physrev.00013.2006.PubMedCrossRefGoogle Scholar
  78. Kuramoto, K., T. Okamura, T. Yamaguchi, T.Y. Nakamura, S. Wakabayashi, H. Morinaga, M. Nomura, T. Yanase, K. Otsu, N. Usuda, S. Matsumura, K. Inoue, T. Fushiki, Y. Kojima, T. Hashimoto, F. Sakai, F. Hirose, and T. Osumi. 2012. Perilipin 5, a lipid droplet-binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation. The Journal of Biological Chemistry 287: 23852–23863. doi: 10.1074/jbc.M111.328708.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kusminski, C.M., S. Shetty, L. Orci, R.H. Unger, and P.E. Scherer. 2009. Diabetes and apoptosis: Lipotoxicity. Apoptosis 14: 1484–1495. doi: 10.1007/s10495-009-0352-8.PubMedCrossRefGoogle Scholar
  80. Lam, Y.Y., G. Hatzinikolas, J.M. Weir, A. Janovská, A.J. McAinch, P. Game, P.J. Meikle, and G.A. Wittert. 2011. Insulin-stimulated glucose uptake and pathways regulating energy metabolism in skeletal muscle cells: The effects of subcutaneous and visceral fat, and long-chain saturated, n-3 and n-6 polyunsaturated fatty acids. Biochimica et Biophysica Acta 1811: 468–475. doi: 10.1016/j.bbalip.2011.04.011.PubMedCrossRefGoogle Scholar
  81. Las, G., and O.S. Shirihai. 2010. The role of autophagy in β-cell lipotoxicity and type 2 diabetes. Diabetes, Obesity & Metabolism 12(Suppl 2): 15–19. doi: 10.1111/j.1463-1326.2010.01268.x.CrossRefGoogle Scholar
  82. Las, G., S.B. Serada, J.D. Wikstrom, G. Twig, and O.S. Shirihai. 2011. Fatty acids suppress autophagic turnover in β-cells. The Journal of Biological Chemistry 286: 42534–42544. doi: 10.1074/jbc.M111.242412.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Le Marchand-Brustel, Y., P. Gual, T. Grémeaux, T. Gonzalez, R. Barrès, and J.-F. Tanti. 2003. Fatty acid-induced insulin resistance: Role of insulin receptor substrate 1 serine phosphorylation in the retroregulation of insulin signalling. Biochemical Society Transactions 31: 1152–1156.PubMedCrossRefGoogle Scholar
  84. Li, R., H. Guan, and K. Yang. 2012. Neuropeptide Y potentiates beta-adrenergic stimulation of lipolysis in 3 T3-L1 adipocytes. Regulatory Peptides 178: 16–20. doi: 10.1016/j.regpep.2012.06.002.PubMedCrossRefGoogle Scholar
  85. Listenberger, L.L., and J.E. Schaffer. 2002. Mechanisms of lipoapoptosis: Implications for human heart disease. Trends in Cardiovascular Medicine 12: 134–138.PubMedCrossRefGoogle Scholar
  86. Listenberger, L.L., X. Han, S.E. Lewis, S. Cases, R.V. Farese, D.S. Ory, and J.E. Schaffer. 2003. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proceedings of the National Academy of Sciences of the United States of America 100: 3077–3082. doi: 10.1073/pnas.0630588100.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Listenberger, L.L., D.S. Ory, and J.E. Schaffer. 2001. Palmitate-induced apoptosis can occur through a ceramide-independent pathway. The Journal of Biological Chemistry 276: 14890–14895. doi: 10.1074/jbc.M010286200.PubMedCrossRefGoogle Scholar
  88. Londos, C., D.L. Brasaemle, C.J. Schultz, D.C. Adler-Wailes, D.M. Levin, A.R. Kimmel, and C.M. Rondinone. 1999a. On the control of lipolysis in adipocytes. Annals of the New York Academy of Sciences 892: 155–168.PubMedCrossRefGoogle Scholar
  89. Londos, C., D.L. Brasaemle, C.J. Schultz, J.P. Segrest, and A.R. Kimmel. 1999b. Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Seminars in Cell & Developmental Biology 10: 51–58. doi: 10.1006/scdb.1998.0275.CrossRefGoogle Scholar
  90. van Loon, L.J.C., and B.H. Goodpaster. 2006. Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state. Pflügers Archiv 451: 606–616. doi: 10.1007/s00424-005-1509-0.PubMedCrossRefGoogle Scholar
  91. Lowell, B.B., and G.I. Shulman. 2005. Mitochondrial dysfunction and type 2 diabetes. Science 307: 384–387. doi: 10.1126/science.1104343.PubMedCrossRefGoogle Scholar
  92. de Luca, C., and J.M. Olefsky. 2008. Inflammation and insulin resistance. FEBS Letters 582: 97–105. doi: 10.1016/j.febslet.2007.11.057.PubMedCrossRefGoogle Scholar
  93. Mailloux, R.J., E.L. Seifert, F. Bouillaud, C. Aguer, S. Collins, and M.-E. Harper. 2011. Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3. The Journal of Biological Chemistry 286: 21865–21875. doi: 10.1074/jbc.M111.240242.PubMedPubMedCentralCrossRefGoogle Scholar
  94. McGarry, J.D. 2002. Banting lecture 2001: Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51: 7–18.PubMedCrossRefGoogle Scholar
  95. McGarry, J.D., G.P. Mannaerts, and D.W. Foster. 1977. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. The Journal of Clinical Investigation 60: 265–270. doi: 10.1172/JCI108764.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Medina-Gomez, G., S. Gray, and A. Vidal-Puig. 2007. Adipogenesis and lipotoxicity: Role of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgammacoactivator-1 (PGC1). Public Health Nutrition 10: 1132–1137. doi: 10.1017/S1368980007000614.PubMedCrossRefGoogle Scholar
  97. Mei, S., H.-M. Ni, S. Manley, A. Bockus, K.M. Kassel, J.P. Luyendyk, B.L. Copple, and W.-X. Ding. 2011. Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes. The Journal of Pharmacology and Experimental Therapeutics 339: 487–498. doi: 10.1124/jpet.111.184341.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Minokoshi, Y., Y.-B. Kim, O.D. Peroni, L.G.D. Fryer, C. Müller, D. Carling, and B.B. Kahn. 2002. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415: 339–343. doi: 10.1038/415339a.PubMedCrossRefGoogle Scholar
  99. Miyoshi, H., S.C. Souza, H.-H. Zhang, K.J. Strissel, M.A. Christoffolete, J. Kovsan, A. Rudich, F.B. Kraemer, A.C. Bianco, M.S. Obin, and A.S. Greenberg. 2006. Perilipin promotes hormone-sensitive lipase-mediated adipocyte lipolysis via phosphorylation-dependent and -independent mechanisms. The Journal of Biological Chemistry 281: 15837–15844. doi: 10.1074/jbc.M601097200.PubMedCrossRefGoogle Scholar
  100. Möhlig, M., F. Isken, M. Ristow. 2004. Impaired mitochondrial activity and insulin-resistant offspring of patients with type 2 diabetes. The New England Journal of Medicine 350: 2419–2421-2421.Google Scholar
  101. Monsénégo, J., A. Mansouri, M. Akkaoui, V. Lenoir, C. Esnous, V. Fauveau, V. Tavernier, J. Girard, and C. Prip-Buus. 2012. Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis. Journal of Hepatology 56: 632–639. doi: 10.1016/j.jhep.2011.10.008.PubMedCrossRefGoogle Scholar
  102. Montell, E., M. Turini, M. Marotta, M. Roberts, V. Noé, C.J. Ciudad, K. Macé, and A.M. Gómez-Foix. 2001. DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in muscle cells. American Journal of Physiology. Endocrinology and Metabolism 280: E229–E237.PubMedGoogle Scholar
  103. Moon, Y.-A., G. Liang, X. Xie, M. Frank-Kamenetsky, K. Fitzgerald, V. Koteliansky, M.S. Brown, J.L. Goldstein, and J.D. Horton. 2012. The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals. Cell Metabolism 15: 240–246. doi: 10.1016/j.cmet.2011.12.017.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Morino, K., K.F. Petersen, and G.I. Shulman. 2006. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55(Suppl 2): S9–S15. doi: 10.2337/db06-S002.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Muoio, D.M., and P.D. Neufer. 2012. Lipid-induced mitochondrial stress and insulin action in muscle. Cell Metabolism 15: 595–605. doi: 10.1016/j.cmet.2012.04.010.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Nagle, C.A., E.L. Klett, and R.A. Coleman. 2009. Hepatic triacylglycerol accumulation and insulin resistance. Journal of Lipid Research 50(Suppl): S74–S79. doi: 10.1194/jlr.R800053-JLR200.PubMedPubMedCentralGoogle Scholar
  107. Nakamura, M.T., B.E. Yudell, and J.J. Loor. 2014. Regulation of energy metabolism by long-chain fatty acids. Progress in Lipid Research 53: 124–144. doi: 10.1016/j.plipres.2013.12.001.PubMedCrossRefGoogle Scholar
  108. Nielsen, T.S., N. Jessen, J.O.L. Jørgensen, N. Møller, and S. Lund. 2014. Dissecting adipose tissue lipolysis: Molecular regulation and implications for metabolic disease. Journal of Molecular Endocrinology 52: R199–R222. doi: 10.1530/JME-13-0277.PubMedCrossRefGoogle Scholar
  109. Noguchi, Y., J.D. Young, J.O. Aleman, M.E. Hansen, J.K. Kelleher, and G. Stephanopoulos. 2009. Effect of anaplerotic fluxes and amino acid availability on hepatic lipoapoptosis. The Journal of Biological Chemistry 284: 33425–33436. doi: 10.1074/jbc.M109.049478.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Nolan, C.J., and C.Z. Larter. 2009. Lipotoxicity: Why do saturated fatty acids cause and monounsaturates protect against it? Journal of Gastroenterology and Hepatology 24: 703–706. doi: 10.1111/j.1440-1746.2009.05823.x.PubMedCrossRefGoogle Scholar
  111. Okumura, T., K. Harada, K. Oue, J. Zhang, S. Asano, M. Hayashiuchi, A. Mizokami, H. Tanaka, M. Irifune, N. Kamata, M. Hirata, and T. Kanematsu. 2014. Phospholipase C-related catalytically inactive protein (PRIP) regulates lipolysis in adipose tissue by modulating the phosphorylation of hormone-sensitive lipase. PLoS One 9: e100559. doi: 10.1371/journal.pone.0100559.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Ozcan, U., Q. Cao, E. Yilmaz, A.-H. Lee, N.N. Iwakoshi, E. Ozdelen, G. Tuncman, C. Görgün, L.H. Glimcher, and G.S. Hotamisligil. 2004. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306: 457–461. doi: 10.1126/science.1103160.PubMedCrossRefGoogle Scholar
  113. Paz, K., R. Hemi, D. LeRoith, A. Karasik, E. Elhanany, H. Kanety, and Y. Zick. 1997. A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. The Journal of Biological Chemistry 272: 29911–29918.PubMedCrossRefGoogle Scholar
  114. Pederson, T.M., D.L. Kramer, and C.M. Rondinone. 2001. Serine/threonine phosphorylation of IRS-1 triggers its degradation: Possible regulation by tyrosine phosphorylation. Diabetes 50: 24–31.PubMedCrossRefGoogle Scholar
  115. Petersen, K.F., D. Befroy, S. Dufour, J. Dziura, C. Ariyan, D.L. Rothman, L. DiPietro, G.W. Cline, and G.I. Shulman. 2003. Mitochondrial dysfunction in the elderly: Possible role in insulin resistance. Science 300: 1140–1142. doi: 10.1126/science.1082889.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Phielix, E., T. Jelenik, P. Nowotny, J. Szendroedi, and M. Roden. 2014. Reduction of non-esterified fatty acids improves insulin sensitivity and lowers oxidative stress, but fails to restore oxidative capacity in type 2 diabetes: A randomised clinical trial. Diabetologia 57: 572–581. doi: 10.1007/s00125-013-3127-2.PubMedCrossRefGoogle Scholar
  117. Quan, W., H.S. Jung, and M.-S. Lee. 2013. Role of autophagy in the progression from obesity to diabetes and in the control of energy balance. Archives of Pharmacal Research 36: 223–229. doi: 10.1007/s12272-013-0024-7.PubMedCrossRefGoogle Scholar
  118. Quan, W., Y.M. Lim, and M.S. Lee. 2012. Role of autophagy in diabetes and endoplasmic reticulum stress of pancreatic β-cells. Experimental & Molecular Medicine 44: 81–88. doi: 10.3858/emm.2012.44.2.030.CrossRefGoogle Scholar
  119. Ratner, C., A.N. Madsen, L.V. Kristensen, L.J. Skov, K.S. Pedersen, O.H. Mortensen, G.M. Knudsen, K. Raun, and B. Holst. 2015. Impaired oxidative capacity due to decreased CPT1b levels as a contributing factor to fat accumulation in obesity. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 308: R973–R982. doi: 10.1152/ajpregu.00219.2014.PubMedCrossRefGoogle Scholar
  120. Reuter, S.E., and A.M. Evans. 2012. Carnitine and acylcarnitines: Pharmacokinetic, pharmacological and clinical aspects. Clinical Pharmacokinetics 51: 553–572. doi: 10.2165/11633940-000000000-00000.PubMedCrossRefGoogle Scholar
  121. Rial, E., L. Rodríguez-Sánchez, E. Gallardo-Vara, P. Zaragoza, E. Moyano, and M.M. González-Barroso. 2010. Lipotoxicity, fatty acid uncoupling and mitochondrial carrier function. Biochimica et Biophysica Acta 1797: 800–806. doi: 10.1016/j.bbabio.2010.04.001.PubMedCrossRefGoogle Scholar
  122. Rindler, P.M., C.L. Crewe, J. Fernandes, M. Kinter, and L.I. Szweda. 2013a. Redox regulation of insulin sensitivity due to enhanced fatty acid utilization in the mitochondria. American Journal of Physiology. Heart and Circulatory Physiology 305: H634–H643. doi: 10.1152/ajpheart.00799.2012.PubMedCrossRefGoogle Scholar
  123. Rindler, P.M., S.M. Plafker, L.I. Szweda, and M. Kinter. 2013b. High dietary fat selectively increases catalase expression within cardiac mitochondria. The Journal of Biological Chemistry 288: 1979–1990. doi: 10.1074/jbc.M112.412890.PubMedCrossRefGoogle Scholar
  124. Rother, K.I., Y. Imai, M. Caruso, F. Beguinot, P. Formisano, and D. Accili. 1998. Evidence that IRS-2 phosphorylation is required for insulin action in hepatocytes. The Journal of Biological Chemistry 273: 17491–17497.PubMedCrossRefGoogle Scholar
  125. Ruderman, N.B., A.K. Saha, D. Vavvas, and L.A. Witters. 1999. Malonyl-CoA, fuel sensing, and insulin resistance. The American Journal of Physiology 276: E1–E18.PubMedGoogle Scholar
  126. Ryden, M., A. Dicker, V. van Harmelen, H. Hauner, M. Brunnberg, L. Perbeck, F. Lonnqvist, and P. Arner. 2002. Mapping of early signaling events in tumor necrosis factor-alpha -mediated lipolysis in human fat cells. The Journal of Biological Chemistry 277: 1085–1091. doi: 10.1074/jbc.M109498200.PubMedCrossRefGoogle Scholar
  127. Sabio, G., and R.J. Davis. 2010. cJun NH2-terminal kinase 1 (JNK1): Roles in metabolic regulation of insulin resistance. Trends in Biochemical Sciences 35: 490–496. doi: 10.1016/j.tibs.2010.04.004.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Saha, P.K., H. Kojima, J. Martinez-Botas, A.L. Sunehag, and L. Chan. 2004. Metabolic adaptations in the absence of perilipin: Increased beta-oxidation and decreased hepatic glucose production associated with peripheral insulin resistance but normal glucose tolerance in perilipin-null mice. The Journal of Biological Chemistry 279: 35150–35158. doi: 10.1074/jbc.M405499200.PubMedCrossRefGoogle Scholar
  129. Schafer, F.Q., and G.R. Buettner. 2001. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology & Medicine 30: 1191–1212.CrossRefGoogle Scholar
  130. Schaffer, J.E. 2003. Lipotoxicity: When tissues overeat. Current Opinion in Lipidology 14: 281–287. doi: 10.1097/01.mol.0000073508.41685.7f.PubMedCrossRefGoogle Scholar
  131. Schenk, S., and J.F. Horowitz. 2006. Coimmunoprecipitation of FAT/CD36 and CPT I in skeletal muscle increases proportionally with fat oxidation after endurance exercise training. American Journal of Physiology. Endocrinology and Metabolism 291: E254–E260. doi: 10.1152/ajpendo.00051.2006.PubMedCrossRefGoogle Scholar
  132. Schmitz-Peiffer, C. 2000. Signalling aspects of insulin resistance in skeletal muscle: Mechanisms induced by lipid oversupply. Cellular Signalling 12: 583–594.PubMedCrossRefGoogle Scholar
  133. Schönfeld, P., and L. Wojtczak. 2008. Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radical Biology & Medicine 45: 231–241. doi: 10.1016/j.freeradbiomed.2008.04.029.CrossRefGoogle Scholar
  134. Schrauwen, P., and M.K.C. Hesselink. 2004. The role of uncoupling protein 3 in fatty acid metabolism: Protection against lipotoxicity? The Proceedings of the Nutrition Society 63: 287–292. doi: 10.1079/PNS2003336.PubMedCrossRefGoogle Scholar
  135. Seifert, E.L., C. Estey, J.Y. Xuan, and M.-E. Harper. 2010. Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation. The Journal of Biological Chemistry 285: 5748–5758. doi: 10.1074/jbc.M109.026203.PubMedCrossRefGoogle Scholar
  136. Seiler, S.E., O.J. Martin, R.C. Noland, D.H. Slentz, K.L. DeBalsi, O.R. Ilkayeva, J. An, C.B. Newgard, T.R. Koves, and D.M. Muoio. 2014. Obesity and lipid stress inhibit carnitine acetyltransferase activity. Journal of Lipid Research 55: 635–644. doi: 10.1194/jlr.M043448.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Senapedis, W.T., C.J. Kennedy, P.M. Boyle, and P.A. Silver. 2011. Whole genome siRNA cell-based screen links mitochondria to Akt signaling network through uncoupling of electron transport chain. Molecular Biology of the Cell 22: 1791–1805. doi: 10.1091/mbc.E10-10-0854.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Shao, W., and P.J. Espenshade. 2014. Sterol regulatory element-binding protein (SREBP) cleavage regulates Golgi-to-endoplasmic reticulum recycling of SREBP cleavage-activating protein (SCAP). The Journal of Biological Chemistry 289: 7547–7557. doi: 10.1074/jbc.M113.545699.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Shi, H., M.V. Kokoeva, K. Inouye, I. Tzameli, H. Yin, and J.S. Flier. 2006. TLR4 links innate immunity and fatty acid-induced insulin resistance. The Journal of Clinical Investigation 116: 3015–3025. doi: 10.1172/JCI28898.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Shimomura, I., M. Matsuda, R.E. Hammer, Y. Bashmakov, M.S. Brown, and J.L. Goldstein. 2000. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Molecular Cell 6: 77–86.PubMedCrossRefGoogle Scholar
  141. Shoelson, S.E., L. Herrero, and A. Naaz. 2007. Obesity, inflammation, and insulin resistance. Gastroenterology 132: 2169–2180. doi: 10.1053/j.gastro.2007.03.059.PubMedCrossRefGoogle Scholar
  142. Shulman, G.I. 2000. Cellular mechanisms of insulin resistance. The Journal of Clinical Investigation 106: 171–176. doi: 10.1172/JCI10583.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Smith, S.R., and E. Ravussin. 2002. Emerging paradigms for understanding fatness and diabetes risk. Current Diabetes Reports 2: 223–230.PubMedCrossRefGoogle Scholar
  144. Son, N.-H., S. Yu, J. Tuinei, K. Arai, H. Hamai, S. Homma, G.I. Shulman, E.D. Abel, and I.J. Goldberg. 2010. PPARγ-induced cardiolipotoxicity in mice is ameliorated by PPARα deficiency despite increases in fatty acid oxidation. The Journal of Clinical Investigation 120: 3443–3454. doi: 10.1172/JCI40905.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Sparagna, G.C., D.L. Hickson-Bick, L.M. Buja, and J.B. McMillin. 2001. Fatty acid-induced apoptosis in neonatal cardiomyocytes: Redox signaling. Antioxidants & Redox Signaling 3: 71–79. doi: 10.1089/152308601750100524.CrossRefGoogle Scholar
  146. Stratford, S., K.L. Hoehn, F. Liu, and S.A. Summers. 2004. Regulation of insulin action by ceramide: Dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. The Journal of Biological Chemistry 279: 36608–36615. doi: 10.1074/jbc.M406499200.PubMedCrossRefGoogle Scholar
  147. Summers, S.A. 2006. Ceramides in insulin resistance and lipotoxicity. Progress in Lipid Research 45: 42–72. doi: 10.1016/j.plipres.2005.11.002.PubMedCrossRefGoogle Scholar
  148. Summers, S.A., and D.H. Nelson. 2005. A role for sphingolipids in producing the common features of type 2 diabetes, metabolic syndrome X, and Cushing’s syndrome. Diabetes 54: 591–602.PubMedCrossRefGoogle Scholar
  149. Summers, S.A., L.A. Garza, H. Zhou, and M.J. Birnbaum. 1998. Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Molecular and Cellular Biology 18: 5457–5464.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Symons, J.D., and E.D. Abel. 2013. Lipotoxicity contributes to endothelial dysfunction: A focus on the contribution from ceramide. Reviews in Endocrine & Metabolic Disorders 14: 59–68. doi: 10.1007/s11154-012-9235-3.CrossRefGoogle Scholar
  151. Szendroedi, J., T. Yoshimura, E. Phielix, C. Koliaki, M. Marcucci, D. Zhang, T. Jelenik, J. Müller, C. Herder, P. Nowotny, G.I. Shulman, and M. Roden. 2014. Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proceedings of the National Academy of Sciences of the United States of America 111: 9597–9602. doi: 10.1073/pnas.1409229111.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Takano, A., I. Usui, T. Haruta, J. Kawahara, T. Uno, M. Iwata, and M. Kobayashi. 2001. Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin. Molecular and Cellular Biology 21: 5050–5062. doi: 10.1128/MCB.21.15.5050-5062.2001.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Tansey, J.T., C. Sztalryd, E.M. Hlavin, A.R. Kimmel, and C. Londos. 2004. The central role of perilipin a in lipid metabolism and adipocyte lipolysis. IUBMB Life 56: 379–385. doi: 10.1080/15216540400009968.PubMedCrossRefGoogle Scholar
  154. Timmers, S., P. Schrauwen, and J. de Vogel. 2008. Muscular diacylglycerol metabolism and insulin resistance. Physiology & Behavior 94: 242–251. doi: 10.1016/j.physbeh.2007.12.002.CrossRefGoogle Scholar
  155. Ueki, K., T. Kondo, and C.R. Kahn. 2004. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Molecular and Cellular Biology 24: 5434–5446. doi: 10.1128/MCB.24.12.5434-5446.2004.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Unger, R.H. 2002. Lipotoxic diseases. Annual Review of Medicine 53: 319–336. doi: 10.1146/ Scholar
  157. ———. 2003a. Minireview: Weapons of lean body mass destruction: The role of ectopic lipids in the metabolic syndrome. Endocrinology 144: 5159–5165. doi: 10.1210/en.2003-0870.PubMedCrossRefGoogle Scholar
  158. ———. 2003b. Lipid overload and overflow: Metabolic trauma and the metabolic syndrome. Trends in Endocrinology and Metabolism 14: 398–403.PubMedCrossRefGoogle Scholar
  159. Unger, R.H., and P.E. Scherer. 2010. Gluttony, sloth and the metabolic syndrome: A roadmap to lipotoxicity. Trends in Endocrinology and Metabolism 21: 345–352. doi: 10.1016/j.tem.2010.01.009.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Valdecantos, M.P., P.L. Prieto-Hontoria, V. Pardo, T. Módol, B. Santamaría, M. Weber, L. Herrero, D. Serra, J. Muntané, A. Cuadrado, M.J. Moreno-Aliaga, J. Alfredo Martínez, and Á.M. Valverde. 2015. Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes. Free Radical Biology & Medicine 84: 263–278. doi: 10.1016/j.freeradbiomed.2015.03.019.CrossRefGoogle Scholar
  161. Wang, H., and C. Sztalryd. 2011. Oxidative tissue: Perilipin 5 links storage with the furnace. Trends Endocrinol Metab 22: 197–203. doi: 10.1016/j.tem.2011.03.008.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Wang, H., U. Sreenivasan, U. Sreenevasan, H. Hu, A. Saladino, B.M. Polster, L.M. Lund, D. Gong, W.C. Stanley, and C. Sztalryd. 2011. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. Journal of Lipid Research 52: 2159–2168. doi: 10.1194/jlr.M017939.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Wang, X.L., L. Zhang, K. Youker, M.-X. Zhang, J. Wang, S.A. LeMaire, J.S. Coselli, and Y.H. Shen. 2006. Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase. Diabetes 55: 2301–2310. doi: 10.2337/db05-1574.PubMedCrossRefGoogle Scholar
  164. Watkins, P.A. 2008. Very-long-chain acyl-CoA synthetases. The Journal of Biological Chemistry 283: 1773–1777. doi: 10.1074/jbc.R700037200.PubMedCrossRefGoogle Scholar
  165. Wellen, K.E., and G.S. Hotamisligil. 2003. Obesity-induced inflammatory changes in adipose tissue. The Journal of Clinical Investigation 112: 1785–1788. doi: 10.1172/JCI20514.PubMedPubMedCentralCrossRefGoogle Scholar
  166. WHO_TRS_916.pdf. (n.d.)Google Scholar
  167. Winder, W.W., and D.G. Hardie. 1996. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. The American Journal of Physiology 270: E299–E304.PubMedGoogle Scholar
  168. Xu, C., J. He, H. Jiang, L. Zu, W. Zhai, S. Pu, and G. Xu. 2009. Direct effect of glucocorticoids on lipolysis in adipocytes. Molecular Endocrinology 23: 1161–1170. doi: 10.1210/me.2008-0464.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Ye, J. 2013. Mechanisms of insulin resistance in obesity. Frontiers in Medicine 7: 14–24. doi: 10.1007/s11684-013-0262-6.CrossRefGoogle Scholar
  170. Ying, W. 2008. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxidants & Redox Signaling 10: 179–206. doi: 10.1089/ars.2007.1672.CrossRefGoogle Scholar
  171. Young, M.E., G.W. Goodwin, J. Ying, P. Guthrie, C.R. Wilson, F.A. Laws, and H. Taegtmeyer. 2001. Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids. American Journal of Physiology. Endocrinology and Metabolism 280: E471–E479.PubMedGoogle Scholar
  172. Yu, C., Y. Chen, G.W. Cline, D. Zhang, H. Zong, Y. Wang, R. Bergeron, J.K. Kim, S.W. Cushman, G.J. Cooney, B. Atcheson, M.F. White, E.W. Kraegen, and G.I. Shulman. 2002. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. The Journal of Biological Chemistry 277: 50230–50236. doi: 10.1074/jbc.M200958200.PubMedCrossRefGoogle Scholar
  173. Yuan, H., X. Zhang, X. Huang, Y. Lu, W. Tang, Y. Man, S. Wang, J. Xi, and J. Li. 2010. NADPH oxidase 2-derived reactive oxygen species mediate FFAs-induced dysfunction and apoptosis of β-cells via JNK, p38 MAPK and p53 pathways. PLoS One 5: e15726. doi: 10.1371/journal.pone.0015726.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Yuzefovych, L., G. Wilson, and L. Rachek. 2010. Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: Role of oxidative stress. American Journal of Physiology. Endocrinology and Metabolism 299: E1096–E1105. doi: 10.1152/ajpendo.00238.2010.PubMedPubMedCentralCrossRefGoogle Scholar
  175. Zámbó, V., L. Simon-Szabó, P. Szelényi, E. Kereszturi, G. Bánhegyi, and M. Csala. 2013. Lipotoxicity in the liver. World Journal of Hepatology 5: 550–557. doi: 10.4254/wjh.v5.i10.550.PubMedPubMedCentralGoogle Scholar
  176. Zehmer, J.K., Y. Huang, G. Peng, J. Pu, R.G.W. Anderson, and P. Liu. 2009. A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9: 914–921. doi: 10.1002/pmic.200800584.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Zhande, R., J.J. Mitchell, J. Wu, and X.J. Sun. 2002. Molecular mechanism of insulin-induced degradation of insulin receptor substrate 1. Molecular and Cellular Biology 22: 1016–1026.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Zhang, D.D. 2006. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metabolism Reviews 38: 769–789. doi: 10.1080/03602530600971974.PubMedCrossRefGoogle Scholar
  179. Zhang, H.H., M. Halbleib, F. Ahmad, V.C. Manganiello, and A.S. Greenberg. 2002. Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes 51: 2929–2935.PubMedCrossRefGoogle Scholar
  180. Zouhal, H., S. Lemoine-Morel, M.-E. Mathieu, G.A. Casazza, and G. Jabbour. 2013. Catecholamines and obesity: Effects of exercise and training. Sports Medicine 43: 591–600. doi: 10.1007/s40279-013-0039-8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Pharmacy, Department of ToxicologyGazi UniversityHipodromTurkey

Personalised recommendations