Non-Alcoholic Fatty Liver Disease

  • Atilla Engin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 960)


Non-alcoholic fatty liver disease (NAFLD) is in parallel with the obesity epidemic and it is the most common cause of liver diseases. The development of hepatic steatosis in majority of patients is linked to dietary fat ingestion. NAFLD is characterized by excess accumulation of triglyceride in the hepatocyte due to both increased inflow of free fatty acids and de novo hepatic lipogenesis. Insulin resistance with the deficiency of insulin receptor substrate-2 (IRS-2)-associated phosphatidylinositol 3-kinase (PI3K) activity causes an increase in intracellular fatty acid-derived metabolites such as diacylglycerol, fatty acyl CoA or ceramides. Lipotoxicity-related mechanism of NAFLD could be explained still best by the “double-hit” hypothesis. Insulin resistance is the major mechanism in the development and progression of NAFLD/Non-alcoholic steatohepatitis (NASH). Metabolic oxidative stress, autophagy, and inflammation induce NASH progression. In the “first hit” the hepatic concentrations of diacylglycerol increase with rising saturated liver fat content in human NAFLD. Activities of mitochondrial respiratory chain complexes are decreased in liver tissue of patients with NASH. Furthermore, hepatocyte lipoapoptosis is a critical feature of NASH. In “second hit” reduced glutathione levels due to oxidative stress lead to overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling that induces cell death in the steatotic liver. Accumulation of toxic levels of reactive oxygen species (ROS) is caused by the ineffectual cycling of the endoplasmic reticulum (ER) oxidoreductin (Ero1)-protein disulfide isomerase oxidation cycle through the downstream of the inner membrane mitochondrial oxidative metabolism and Kelch like-ECH-associated protein 1 (Keap1)- Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway.


Acetyl-CoA carboxylase (ACC) 1 Atypical protein kinase C (aPKC) Autophagy Ceramide Cirrhosis Diacylglycerol (DAG) Diacylglycerol acyltransferase (DGAT) Fatty acid synthase (FAS) Hepatic steatosis Mammalian target of rapamycin complex 1 (mTORC1) Non-alcoholic fatty liver disease (NAFLD) Non-alcoholic steatohepatitis (NASH) Obesity Protein kinase C (PKC) Serum alanine aminotransferase (ALT) Sterol regulatory element-binding protein-1c (SREBP-1c) Triglyceride Tumor necrosis factor-alpha (TNF-alpha) Unfolded protein response (UPR) 


  1. Akazawa, Y., S. Cazanave, J.L. Mott, N. Elmi, S.F. Bronk, S. Kohno, M.R. Charlton, and G.J. Gores. 2010. Palmitoleate attenuates palmitate-induced Bim and PUMA up-regulation and hepatocyte lipoapoptosis. Journal of Hepatology 52: 586–593. doi: 10.1016/j.jhep.2010.01.003.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Akie, T.E., L. Liu, M. Nam, S. Lei, and M.P. Cooper. 2015. OXPHOS-mediated induction of NAD+ promotes complete oxidation of fatty acids and interdicts non-alcoholic fatty liver disease. PLoS One 10: e0125617. doi: 10.1371/journal.pone.0125617.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amir, M., and M.J. Czaja. 2011. Autophagy in nonalcoholic steatohepatitis. Expert Review of Gastroenterology & Hepatology 5: 159–166. doi: 10.1586/egh.11.4.CrossRefGoogle Scholar
  4. Amir, M., K. Liu, E. Zhao, and M.J. Czaja. 2012. Distinct functions of JNK and c-Jun in oxidant-induced hepatocyte death. Journal of Cellular Biochemistry 113: 3254–3265. doi: 10.1002/jcb.24203.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bakan, I., and M. Laplante. 2012. Connecting mTORC1 signaling to SREBP-1 activation. Current Opinion in Lipidology 23: 226–234. doi: 10.1097/MOL.0b013e328352dd03.PubMedCrossRefGoogle Scholar
  6. Barreyro, F.J., S. Kobayashi, S.F. Bronk, N.W. Werneburg, H. Malhi, and G.J. Gores. 2007. Transcriptional regulation of Bim by FoxO3A mediates hepatocyte lipoapoptosis. The Journal of Biological Chemistry 282: 27141–27154. doi: 10.1074/jbc.M704391200.PubMedCrossRefGoogle Scholar
  7. Bazick, J., M. Donithan, B.A. Neuschwander-Tetri, D. Kleiner, E.M. Brunt, L. Wilson, E. Doo, J. Lavine, J. Tonascia, and R. Loomba. 2015. Clinical model for NASH and advanced fibrosis in adult patients with diabetes and NAFLD: Guidelines for referral in NAFLD. Diabetes Care 38: 1347–1355. doi: 10.2337/dc14-1239.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Berlanga, A., E. Guiu-Jurado, J.A. Porras, and T. Auguet. 2014. Molecular pathways in non-alcoholic fatty liver disease. Clinical and Experimental Gastroenterology 7: 221–239. doi: 10.2147/CEG.S62831.PubMedPubMedCentralGoogle Scholar
  9. Birkenfeld, A.L., and G.I. Shulman. 2014. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 59: 713–723. doi: 10.1002/hep.26672.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Błachnio-Zabielska, A.U., M. Pułka, M. Baranowski, A. Nikołajuk, P. Zabielski, M. Górska, and J. Górski. 2012. Ceramide metabolism is affected by obesity and diabetes in human adipose tissue. Journal of Cellular Physiology 227: 550–557. doi: 10.1002/jcp.22745.PubMedCrossRefGoogle Scholar
  11. Buqué, X., A. Cano, M.E. Miquilena-Colina, C. García-Monzón, B. Ochoa, and P. Aspichueta. 2012. High insulin levels are required for FAT/CD36 plasma membrane translocation and enhanced fatty acid uptake in obese Zucker rat hepatocytes. American Journal of Physiology. Endocrinology and Metabolism 303: E504–E514. doi: 10.1152/ajpendo.00653.2011.PubMedCrossRefGoogle Scholar
  12. Buzzetti, E., M. Pinzani, and E.A. Tsochatzis. 2016. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65: 1038–1048. doi: 10.1016/j.metabol.2015.12.012.PubMedCrossRefGoogle Scholar
  13. Caldwell, S.H., R.H. Swerdlow, E.M. Khan, J.C. Iezzoni, E.E. Hespenheide, J.K. Parks, and W.D. Parker. 1999. Mitochondrial abnormalities in non-alcoholic steatohepatitis. Journal of Hepatology 31: 430–434.PubMedCrossRefGoogle Scholar
  14. Camps, J., and J. Joven. 2015. Chemokine ligand 2 and paraoxonase-1 in non-alcoholic fatty liver disease: The search for alternative causative factors. World Journal of Gastroenterology 21: 2875–2882. doi: 10.3748/wjg.v21.i10.2875.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Canbay, A., L. Bechmann, and G. Gerken. 2007. Lipid metabolism in the liver. Zeitschrift für Gastroenterologie 45: 35–41. doi: 10.1055/s-2006-927368.PubMedCrossRefGoogle Scholar
  16. Cao, H., K. Gerhold, J.R. Mayers, M.M. Wiest, S.M. Watkins, and G.S. Hotamisligil. 2008. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134: 933–944. doi: 10.1016/j.cell.2008.07.048.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Carr, M.C., J.E. Hokanson, S.S. Deeb, J.Q. Purnell, E.S. Mitchell, and J.D. Brunzell. 1999. A hepatic lipase gene promoter polymorphism attenuates the increase in hepatic lipase activity with increasing intra-abdominal fat in women. Arteriosclerosis, Thrombosis, and Vascular Biology 19: 2701–2707.PubMedCrossRefGoogle Scholar
  18. Cartron, P.-F., T. Gallenne, G. Bougras, F. Gautier, F. Manero, P. Vusio, K. Meflah, F.M. Vallette, and P. Juin. 2004. The first alpha helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Molecular Cell 16: 807–818. doi: 10.1016/j.molcel.2004.10.028.PubMedCrossRefGoogle Scholar
  19. Castera, L., V. Vilgrain, and P. Angulo. 2013. Noninvasive evaluation of NAFLD. Nature Reviews. Gastroenterology & Hepatology 10: 666–675. doi: 10.1038/nrgastro.2013.175.CrossRefGoogle Scholar
  20. Cazanave, S.C., J.L. Mott, N.A. Elmi, S.F. Bronk, N.W. Werneburg, Y. Akazawa, A. Kahraman, S.P. Garrison, G.P. Zambetti, M.R. Charlton, and G.J. Gores. 2009. JNK1-dependent PUMA expression contributes to hepatocyte lipoapoptosis. The Journal of Biological Chemistry 284: 26591–26602. doi: 10.1074/jbc.M109.022491.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cazanave, S.C., J.L. Mott, S.F. Bronk, N.W. Werneburg, C.D. Fingas, X.W. Meng, N. Finnberg, W.S. El-Deiry, S.H. Kaufmann, and G.J. Gores. 2011. Death receptor 5 signaling promotes hepatocyte lipoapoptosis. The Journal of Biological Chemistry 286: 39336–39348. doi: 10.1074/jbc.M111.280420.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chakravarthi, S., C.E. Jessop, and N.J. Bulleid. 2006. The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Reports 7: 271–275. doi: 10.1038/sj.embor.7400645.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chakravarthy, M.V., Z. Pan, Y. Zhu, K. Tordjman, J.G. Schneider, T. Coleman, J. Turk, and C.F. Semenkovich. 2005. “New” hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metabolism 1: 309–322. doi: 10.1016/j.cmet.2005.04.002.PubMedCrossRefGoogle Scholar
  24. Chalasani, N., M.A. Deeg, and D.W. Crabb. 2004. Systemic levels of lipid peroxidation and its metabolic and dietary correlates in patients with nonalcoholic steatohepatitis. The American Journal of Gastroenterology 99: 1497–1502. doi: 10.1111/j.1572-0241.2004.30159.x.PubMedCrossRefGoogle Scholar
  25. Charlton, M.R., J.M. Burns, R.A. Pedersen, K.D. Watt, J.K. Heimbach, and R.A. Dierkhising. 2011. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology 141: 1249–1253. doi: 10.1053/j.gastro.2011.06.061.PubMedCrossRefGoogle Scholar
  26. Chen, G., G. Liang, J. Ou, J.L. Goldstein, and M.S. Brown. 2004. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proceedings of the National Academy of Sciences of the United States of America 101: 11245–11250. doi: 10.1073/pnas.0404297101.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chitturi, S., and G.C. Farrell. 2001. Etiopathogenesis of nonalcoholic steatohepatitis. Seminars in Liver Disease 21: 27–41.PubMedCrossRefGoogle Scholar
  28. Chmurzyńska, A. 2006. The multigene family of fatty acid-binding proteins (FABPs): Function, structure and polymorphism. Journal of Applied Genetics 47: 39–48. doi: 10.1007/BF03194597.PubMedCrossRefGoogle Scholar
  29. Choi, S.S., and A.M. Diehl. 2008. Hepatic triglyceride synthesis and nonalcoholic fatty liver disease. Current Opinion in Lipidology 19: 295–300. doi: 10.1097/MOL.0b013e3282ff5e55.PubMedCrossRefGoogle Scholar
  30. Choi, C.S., D.B. Savage, A. Kulkarni, X.X. Yu, Z.-X. Liu, K. Morino, S. Kim, A. Distefano, V.T. Samuel, S. Neschen, D. Zhang, A. Wang, X.-M. Zhang, M. Kahn, G.W. Cline, S.K. Pandey, J.G. Geisler, S. Bhanot, B.P. Monia, and G.I. Shulman. 2007. Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. The Journal of Biological Chemistry 282: 22678–22688. doi: 10.1074/jbc.M704213200.PubMedCrossRefGoogle Scholar
  31. Cohen, B.-C., A. Shamay, and N. Argov-Argaman. 2015. Regulation of lipid droplet size in mammary epithelial cells by remodeling of membrane lipid composition-a potential mechanism. PLoS One 10: e0121645. doi: 10.1371/journal.pone.0121645.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Colell, A., J.-E. Ricci, S. Tait, S. Milasta, U. Maurer, L. Bouchier-Hayes, P. Fitzgerald, A. Guio-Carrion, N.J. Waterhouse, C.W. Li, B. Mari, P. Barbry, D.D. Newmeyer, H.M. Beere, and D.R. Green. 2007. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129: 983–997. doi: 10.1016/j.cell.2007.03.045.PubMedCrossRefGoogle Scholar
  33. Colombini, M. 2010. Ceramide channels and their role in mitochondria-mediated apoptosis. Biochimica et Biophysica Acta 1797: 1239–1244. doi: 10.1016/j.bbabio.2010.01.021.PubMedCrossRefGoogle Scholar
  34. ———. 2013. Membrane channels formed by ceramide. Handbook of Experimental Pharmacology 215: 109–126. doi: 10.1007/978-3-7091-1368-4_6.
  35. Cong, W.-N., R.-Y. Tao, J.-Y. Tian, G.-T. Liu, and F. Ye. 2008. The establishment of a novel non-alcoholic steatohepatitis model accompanied with obesity and insulin resistance in mice. Life Sciences 82: 983–990. doi: 10.1016/j.lfs.2008.01.022.PubMedCrossRefGoogle Scholar
  36. Cota, D., G. Marsicano, M. Tschöp, Y. Grübler, C. Flachskamm, M. Schubert, D. Auer, A. Yassouridis, C. Thöne-Reineke, S. Ortmann, F. Tomassoni, C. Cervino, E. Nisoli, A.C.E. Linthorst, R. Pasquali, B. Lutz, G.K. Stalla, and U. Pagotto. 2003. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. The Journal of Clinical Investigation 112: 423–431. doi: 10.1172/JCI17725.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Cullinan, S.B., D. Zhang, M. Hannink, E. Arvisais, R.J. Kaufman, and J.A. Diehl. 2003. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Molecular and Cellular Biology 23: 7198–7209.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cuozzo, J.W., and C.A. Kaiser. 1999. Competition between glutathione and protein thiols for disulphide-bond formation. Nature Cell Biology 1: 130–135. doi: 10.1038/11047.PubMedCrossRefGoogle Scholar
  39. Cusi, K. 2012. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: Pathophysiology and clinical implications. Gastroenterology 142: 711–725.e6. doi: 10.1053/j.gastro.2012.02.003.PubMedCrossRefGoogle Scholar
  40. Czaja, M.J. 2007. Cell signaling in oxidative stress-induced liver injury. Seminars in Liver Disease 27: 378–389. doi: 10.1055/s-2007-991514.PubMedCrossRefGoogle Scholar
  41. Danno, H., K. Ishii, Y. Nakagawa, M. Mikami, T. Yamamoto, S. Yabe, M. Furusawa, S. Kumadaki, K. Watanabe, H. Shimizu, T. Matsuzaka, K. Kobayashi, A. Takahashi, S. Yatoh, H. Suzuki, N. Yamada, and H. Shimano. 2010. The liver-enriched transcription factor CREBH is nutritionally regulated and activated by fatty acids and PPARalpha. Biochemical and Biophysical Research Communications 391: 1222–1227. doi: 10.1016/j.bbrc.2009.12.046.PubMedCrossRefGoogle Scholar
  42. den Boer, M., P.J. Voshol, F. Kuipers, L.M. Havekes, and J.A. Romijn. 2004. Hepatic steatosis: A mediator of the metabolic syndrome. Lessons from animal models. Arteriosclerosis, Thrombosis, and Vascular Biology 24: 644–649. doi: 10.1161/01.ATV.0000116217.57583.6e.CrossRefGoogle Scholar
  43. Díez-Rodríguez, R., M.D. Ballesteros-Pomar, A. Calleja-Fernández, T. González-De-Francisco, L. González-Herráez, S. Calleja-Antolín, I. Cano-Rodríguez, and J.L. Olcoz-Goñi. 2014. Insulin resistance and metabolic syndrome are related to non-alcoholic fatty liver disease, but not visceral adiposity index, in severely obese patients. Revista Espanola de Enfermedades Digestivas 106: 522–528.PubMedGoogle Scholar
  44. Diraison, F., P. Moulin, and M. Beylot. 2003. Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes & Metabolism 29: 478–485.CrossRefGoogle Scholar
  45. Dong, H., and M.J. Czaja. 2011. Regulation of lipid droplets by autophagy. Trends in Endocrinology and Metabolism 22: 234–240. doi: 10.1016/j.tem.2011.02.003.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Donnelly, K.L., C.I. Smith, S.J. Schwarzenberg, J. Jessurun, M.D. Boldt, and E.J. Parks. 2005. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. The Journal of Clinical Investigation 115: 1343–1351. doi: 10.1172/JCI23621.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Dumortier, J., E. Giostra, S. Belbouab, I. Morard, O. Guillaud, L. Spahr, O. Boillot, L. Rubbia-Brandt, J.-Y. Scoazec, and A. Hadengue. 2010. Non-alcoholic fatty liver disease in liver transplant recipients: Another story of “seed and soil”. The American Journal of Gastroenterology 105: 613–620. doi: 10.1038/ajg.2009.717.PubMedCrossRefGoogle Scholar
  48. Eaton, S. 2002. Control of mitochondrial beta-oxidation flux. Progress in Lipid Research 41: 197–239.PubMedCrossRefGoogle Scholar
  49. Ekstedt, M., H. Hagström, P. Nasr, M. Fredrikson, P. Stål, S. Kechagias, and R. Hultcrantz. 2015. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61: 1547–1554. doi: 10.1002/hep.27368.PubMedCrossRefGoogle Scholar
  50. Elrick, M.J., S. Fluss, and M. Colombini. 2006. Sphingosine, a product of ceramide hydrolysis, influences the formation of ceramide channels. Biophysical Journal 91: 1749–1756. doi: 10.1529/biophysj.106.088443.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ercin, C.N., T. Dogru, H. Genc, G. Celebi, F. Aslan, H. Gurel, M. Kara, E. Sertoglu, S. Tapan, S. Bagci, M. Rizzo, and A. Sonmez. 2015. Insulin resistance but not visceral adiposity index is associated with liver fibrosis in nondiabetic subjects with nonalcoholic fatty liver disease. Metabolic Syndrome and Related Disorders 13: 319–325. doi: 10.1089/met.2015.0018.PubMedCrossRefGoogle Scholar
  52. Erion, D.M., I.D. Ignatova, S. Yonemitsu, Y. Nagai, P. Chatterjee, D. Weismann, J.J. Hsiao, D. Zhang, T. Iwasaki, R. Stark, C. Flannery, M. Kahn, C.M. Carmean, X.X. Yu, S.F. Murray, S. Bhanot, B.P. Monia, G.W. Cline, V.T. Samuel, and G.I. Shulman. 2009. Prevention of hepatic steatosis and hepatic insulin resistance by knockdown of cAMP response element-binding protein. Cell Metabolism 10: 499–506. doi: 10.1016/j.cmet.2009.10.007.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Farese, R.V., M.P. Sajan, and M.L. Standaert. 2005. Insulin-sensitive protein kinases (atypical protein kinase C and protein kinase B/Akt): Actions and defects in obesity and type II diabetes. Experimental Biology and Medicine (Maywood, NJ) 230: 593–605.Google Scholar
  54. Feldstein, A.E., N.W. Werneburg, Z. Li, S.F. Bronk, and G.J. Gores. 2006. Bax inhibition protects against free fatty acid-induced lysosomal permeabilization. American Journal of Physiology. Gastrointestinal and Liver Physiology 290: G1339–G1346. doi: 10.1152/ajpgi.00509.2005.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Feng, D., D.Y. Youn, X. Zhao, Y. Gao, W.J. Quinn, A.M. Xiaoli, Y. Sun, M.J. Birnbaum, J.E. Pessin, and F. Yang. 2015. mTORC1 Down-Regulates Cyclin-Dependent Kinase 8 (CDK8) and Cyclin C (CycC). PLoS One 10: e0126240. doi: 10.1371/journal.pone.0126240.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ferré, P., and F. Foufelle. 2010. Hepatic steatosis: A role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes, Obesity & Metabolism 12(Suppl 2): 83–92. doi: 10.1111/j.1463-1326.2010.01275.x.CrossRefGoogle Scholar
  57. Furukawa, S., T. Fujita, M. Shimabukuro, M. Iwaki, Y. Yamada, Y. Nakajima, O. Nakayama, M. Makishima, M. Matsuda, and I. Shimomura. 2004. Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of Clinical Investigation 114: 1752–1761. doi: 10.1172/JCI21625.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Ganz, M., and G. Szabo. 2013. Immune and inflammatory pathways in NASH. Hepatology International 7(Suppl 2): 771–781. doi: 10.1007/s12072-013-9468-6.PubMedPubMedCentralCrossRefGoogle Scholar
  59. García-Ruiz, I., C. Rodríguez-Juan, T. Díaz-Sanjuan, P. del Hoyo, F. Colina, T. Muñoz-Yagüe, and J.A. Solís-Herruzo. 2006. Uric acid and anti-TNF antibody improve mitochondrial dysfunction in ob/ob mice. Hepatology 44: 581–591. doi: 10.1002/hep.21313.PubMedCrossRefGoogle Scholar
  60. García-Ruiz, I., D. Fernández-Moreira, P. Solís-Muñoz, C. Rodríguez-Juan, T. Díaz-Sanjuán, T. Muñoz-Yagüe, and J.A. Solís-Herruzo. 2010. Mitochondrial complex I subunits are decreased in murine nonalcoholic fatty liver disease: Implication of peroxynitrite. Journal of Proteome Research 9: 2450–2459. doi: 10.1021/pr9011427.PubMedCrossRefGoogle Scholar
  61. García-Ruiz, C., A. Baulies, M. Mari, P.M. García-Rovés, and J.C. Fernandez-Checa. 2013. Mitochondrial dysfunction in non-alcoholic fatty liver disease and insulin resistance: Cause or consequence? Free Radical Research 47: 854–868. doi: 10.3109/10715762.2013.830717.PubMedCrossRefGoogle Scholar
  62. García-Ruiz, I., P. Solís-Muñoz, D. Fernández-Moreira, M. Grau, F. Colina, T. Muñoz-Yagüe, and J.A. Solís-Herruzo. 2014. High-fat diet decreases activity of the oxidative phosphorylation complexes and causes nonalcoholic steatohepatitis in mice. Disease Models & Mechanisms 7: 1287–1296. doi: 10.1242/dmm.016766.CrossRefGoogle Scholar
  63. Garcia-Ruiz, C., J.M. Mato, D. Vance, N. Kaplowitz, and J.C. Fernández-Checa. 2015. Acid sphingomyelinase-ceramide system in steatohepatitis: A novel target regulating multiple pathways. Journal of Hepatology 62: 219–233. doi: 10.1016/j.jhep.2014.09.023.PubMedCrossRefGoogle Scholar
  64. Gauthier, M.-S., R. Favier, and J.-M. Lavoie. 2006. Time course of the development of non-alcoholic hepatic steatosis in response to high-fat diet-induced obesity in rats. The British Journal of Nutrition 95: 273–281.PubMedCrossRefGoogle Scholar
  65. Gentile, C.L., M.A. Frye, and M.J. Pagliassotti. 2011. Fatty acids and the endoplasmic reticulum in nonalcoholic fatty liver disease. BioFactors (Oxford, England) 37: 8–16. doi: 10.1002/biof.135.CrossRefGoogle Scholar
  66. Giby, V.G., and T.A. Ajith. 2014. Role of adipokines and peroxisome proliferator-activated receptors in nonalcoholic fatty liver disease. World Journal of Hepatology 6: 570–579. doi: 10.4254/wjh.v6.i8.570.PubMedPubMedCentralGoogle Scholar
  67. Greco, D., A. Kotronen, J. Westerbacka, O. Puig, P. Arkkila, T. Kiviluoto, S. Laitinen, M. Kolak, R.M. Fisher, A. Hamsten, P. Auvinen, and H. Yki-Järvinen. 2008. Gene expression in human NAFLD. American Journal of Physiology. Gastrointestinal and Liver Physiology 294: G1281–G1287. doi: 10.1152/ajpgi.00074.2008.PubMedCrossRefGoogle Scholar
  68. Green, D.R., L. Galluzzi, and G. Kroemer. 2011. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333: 1109–1112. doi: 10.1126/science.1201940.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Gustafson, B., and U. Smith. 2015. Regulation of white adipogenesis and its relation to ectopic fat accumulation and cardiovascular risk. Atherosclerosis 241: 27–35. doi: 10.1016/j.atherosclerosis.2015.04.812.PubMedCrossRefGoogle Scholar
  70. Ha, J., J.K. Lee, K.S. Kim, L.A. Witters, and K.H. Kim. 1996. Cloning of human acetyl-CoA carboxylase-beta and its unique features. Proceedings of the National Academy of Sciences of the United States of America 93: 11466–11470.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hage Hassan, R., O. Bourron, and E. Hajduch. 2014. Defect of insulin signal in peripheral tissues: Important role of ceramide. World Journal of Diabetes 5: 244–257. doi: 10.4239/wjd.v5.i3.244.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Han, M.S., S.Y. Park, K. Shinzawa, S. Kim, K.W. Chung, J.-H. Lee, C.H. Kwon, K.-W. Lee, J.-H. Lee, C.K. Park, W.J. Chung, J.S. Hwang, J.-J. Yan, D.-K. Song, Y. Tsujimoto, and M.-S. Lee. 2008. Lysophosphatidylcholine as a death effector in the lipoapoptosis of hepatocytes. Journal of Lipid Research 49: 84–97. doi: 10.1194/jlr.M700184-JLR200.PubMedCrossRefGoogle Scholar
  73. Hannun, Y.A., and L.M. Obeid. 2008. Principles of bioactive lipid signalling: Lessons from sphingolipids. Nature Reviews. Molecular Cell Biology 9: 139–150. doi: 10.1038/nrm2329.PubMedCrossRefGoogle Scholar
  74. Harding, H.P., I. Novoa, Y. Zhang, H. Zeng, R. Wek, M. Schapira, and D. Ron. 2000. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Molecular Cell 6: 1099–1108.PubMedCrossRefGoogle Scholar
  75. Harding, H.P., Y. Zhang, H. Zeng, I. Novoa, P.D. Lu, M. Calfon, N. Sadri, C. Yun, B. Popko, R. Paules, D.F. Stojdl, J.C. Bell, T. Hettmann, J.M. Leiden, and D. Ron. 2003. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Molecular Cell 11: 619–633.PubMedCrossRefGoogle Scholar
  76. Haukeland, J.W., J.K. Damås, Z. Konopski, E.M. Løberg, T. Haaland, I. Goverud, P.A. Torjesen, K. Birkeland, K. Bjøro, and P. Aukrust. 2006. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. Journal of Hepatology 44: 1167–1174. doi: 10.1016/j.jhep.2006.02.011.PubMedCrossRefGoogle Scholar
  77. Haynes, C.M., E.A. Titus, and A.A. Cooper. 2004. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Molecular Cell 15: 767–776. doi: 10.1016/j.molcel.2004.08.025.PubMedCrossRefGoogle Scholar
  78. He, S., C. McPhaul, J.Z. Li, R. Garuti, L. Kinch, N.V. Grishin, J.C. Cohen, and H.H. Hobbs. 2010. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. The Journal of Biological Chemistry 285: 6706–6715. doi: 10.1074/jbc.M109.064501.PubMedCrossRefGoogle Scholar
  79. Hwang, J.-H., D.T. Stein, N. Barzilai, M.-H. Cui, J. Tonelli, P. Kishore, and M. Hawkins. 2007. Increased intrahepatic triglyceride is associated with peripheral insulin resistance: In vivo MR imaging and spectroscopy studies. American Journal of Physiology. Endocrinology and Metabolism 293: E1663–E1669. doi: 10.1152/ajpendo.00590.2006.PubMedCrossRefGoogle Scholar
  80. Ito, D., J.R. Walker, C.S. Thompson, I. Moroz, W. Lin, M.L. Veselits, A.M. Hakim, A.A. Fienberg, and G. Thinakaran. 2004. Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties. Molecular and Cellular Biology 24: 9456–9469. doi: 10.1128/MCB.24.21.9456-9469.2004.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Jin, C., and R.A. Flavell. 2010. Molecular mechanism of NLRP3 inflammasome activation. Journal of Clinical Immunology 30: 628–631. doi: 10.1007/s10875-010-9440-3.PubMedCrossRefGoogle Scholar
  82. Jornayvaz, F.R., A.L. Birkenfeld, M.J. Jurczak, S. Kanda, B.A. Guigni, D.C. Jiang, D. Zhang, H.-Y. Lee, V.T. Samuel, and G.I. Shulman. 2011. Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2. Proceedings of the National Academy of Sciences of the United States of America 108: 5748–5752. doi: 10.1073/pnas.1103451108.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Karin, M., and E. Gallagher. 2005. From JNK to pay dirt: Jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life 57: 283–295. doi: 10.1080/15216540500097111.PubMedCrossRefGoogle Scholar
  84. Kawano, Y., and D.E. Cohen. 2013. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. Journal of Gastroenterology 48: 434–441. doi: 10.1007/s00535-013-0758-5.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kendrick, A.A., M. Choudhury, S.M. Rahman, C.E. McCurdy, M. Friederich, J.L.K. Van Hove, P.A. Watson, N. Birdsey, J. Bao, D. Gius, M.N. Sack, E. Jing, C.R. Kahn, J.E. Friedman, and K.R. Jonscher. 2011. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochemical Journal 433: 505–514. doi: 10.1042/BJ20100791.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kim, J.K., J.J. Fillmore, Y. Chen, C. Yu, I.K. Moore, M. Pypaert, E.P. Lutz, Y. Kako, W. Velez-Carrasco, I.J. Goldberg, J.L. Breslow, and G.I. Shulman. 2001. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proceedings of the National Academy of Sciences of the United States of America 98: 7522–7527. doi: 10.1073/pnas.121164498.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kim, H.-J., J.H. Kim, S. Noh, H.J. Hur, M.J. Sung, J.-T. Hwang, J.H. Park, H.J. Yang, M.-S. Kim, D.Y. Kwon, and S.H. Yoon. 2011. Metabolomic analysis of livers and serum from high-fat diet induced obese mice. Journal of Proteome Research 10: 722–731. doi: 10.1021/pr100892r.PubMedCrossRefGoogle Scholar
  88. Kim, D., W.R. Kim, H.J. Kim, and T.M. Therneau. 2013. Association between noninvasive fibrosis markers and mortality among adults with nonalcoholic fatty liver disease in the United States. Hepatology 57: 1357–1365. doi: 10.1002/hep.26156.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kohjima, M., M. Enjoji, N. Higuchi, M. Kato, K. Kotoh, T. Yoshimoto, T. Fujino, M. Yada, R. Yada, N. Harada, R. Takayanagi, and M. Nakamuta. 2007. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. International Journal of Molecular Medicine 20: 351–358.PubMedGoogle Scholar
  90. Koliaki, C., J. Szendroedi, K. Kaul, T. Jelenik, P. Nowotny, F. Jankowiak, C. Herder, M. Carstensen, M. Krausch, W.T. Knoefel, M. Schlensak, and M. Roden. 2015. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metabolism 21: 739–746. doi: 10.1016/j.cmet.2015.04.004.PubMedCrossRefGoogle Scholar
  91. Koska, J., N. Stefan, P.A. Permana, C. Weyer, M. Sonoda, C. Bogardus, S.R. Smith, D.R. Joanisse, T. Funahashi, J. Krakoff, and J.C. Bunt. 2008. Increased fat accumulation in liver may link insulin resistance with subcutaneous abdominal adipocyte enlargement, visceral adiposity, and hypoadiponectinemia in obese individuals. The American Journal of Clinical Nutrition 87: 295–302.PubMedGoogle Scholar
  92. Kotronen, A., T. Seppänen-Laakso, J. Westerbacka, T. Kiviluoto, J. Arola, A.-L. Ruskeepää, M. Oresic, and H. Yki-Järvinen. 2009. Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver. Diabetes 58: 203–208. doi: 10.2337/db08-1074.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Krawczyk, M., P. Portincasa, and F. Lammert. 2013. PNPLA3-associated steatohepatitis: Toward a gene-based classification of fatty liver disease. Seminars in Liver Disease 33: 369–379. doi: 10.1055/s-0033-1358525.PubMedCrossRefGoogle Scholar
  94. Kumashiro, N., D.M. Erion, D. Zhang, M. Kahn, S.A. Beddow, X. Chu, C.D. Still, G.S. Gerhard, X. Han, J. Dziura, K.F. Petersen, V.T. Samuel, and G.I. Shulman. 2011. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proceedings of the National Academy of Sciences of the United States of America 108: 16381–16385. doi: 10.1073/pnas.1113359108.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kurek, K., D.M. Piotrowska, P. Wiesiołek-Kurek, B. Łukaszuk, A. Chabowski, J. Górski, and M. Zendzian-Piotrowska. 2014. Inhibition of ceramide de novo synthesis reduces liver lipid accumulation in rats with nonalcoholic fatty liver disease. Liver International 34: 1074–1083. doi: 10.1111/liv.12331.PubMedCrossRefGoogle Scholar
  96. Lee, A.-H. 2012. The role of CREB-H transcription factor in triglyceride metabolism. Current Opinion in Lipidology 23: 141–146. doi: 10.1097/MOL.0b013e3283508fed.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Li, S., M.S. Brown, and J.L. Goldstein. 2010. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proceedings of the National Academy of Sciences of the United States of America 107: 3441–3446. doi: 10.1073/pnas.0914798107.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Li, H., Y. Song, L.-J. Zhang, Y. Gu, F.-F. Li, S.-Y. Pan, L.-N. Jiang, F. Liu, J. Ye, and Q. Li. 2012. LSDP5 enhances triglyceride storage in hepatocytes by influencing lipolysis and fatty acid β-oxidation of lipid droplets. PLoS One 7: e36712. doi: 10.1371/journal.pone.0036712.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Liu, P., Y. Ying, Y. Zhao, D.I. Mundy, M. Zhu, and R.G.W. Anderson. 2004. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. The Journal of Biological Chemistry 279: 3787–3792. doi: 10.1074/jbc.M311945200.PubMedCrossRefGoogle Scholar
  100. Liu, W., S.S. Baker, R.D. Baker, and L. Zhu. 2015. Antioxidant mechanisms in nonalcoholic fatty liver disease. Current Drug Targets 16: 1301–1314.PubMedCrossRefGoogle Scholar
  101. Londos, C., D.L. Brasaemle, C.J. Schultz, D.C. Adler-Wailes, D.M. Levin, A.R. Kimmel, and C.M. Rondinone. 1999. On the control of lipolysis in adipocytes. Annals of the New York Academy of Sciences 892: 155–168.PubMedCrossRefGoogle Scholar
  102. Ma, Y., J.W. Brewer, J.A. Diehl, and L.M. Hendershot. 2002. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. Journal of Molecular Biology 318: 1351–1365.PubMedCrossRefGoogle Scholar
  103. Magkos, F., X. Su, D. Bradley, E. Fabbrini, C. Conte, J.C. Eagon, J.E. Varela, E.M. Brunt, B.W. Patterson, and S. Klein. 2012. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology 142: 1444–1446.e2. doi: 10.1053/j.gastro.2012.03.003.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Malhi, H., S.F. Bronk, N.W. Werneburg, and G.J. Gores. 2006. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. The Journal of Biological Chemistry 281: 12093–12101. doi: 10.1074/jbc.M510660200.PubMedCrossRefGoogle Scholar
  105. Malhi, H., F.J. Barreyro, H. Isomoto, S.F. Bronk, and G.J. Gores. 2007. Free fatty acids sensitise hepatocytes to TRAIL mediated cytotoxicity. Gut 56: 1124–1131. doi: 10.1136/gut.2006.118059.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Mao, J., F.J. DeMayo, H. Li, L. Abu-Elheiga, Z. Gu, T.E. Shaikenov, P. Kordari, S.S. Chirala, W.C. Heird, and S.J. Wakil. 2006. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proceedings of the National Academy of Sciences of the United States of America 103: 8552–8557. doi: 10.1073/pnas.0603115103.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Marí, M., and J.C. Fernández-Checa. 2007. Sphingolipid signalling and liver diseases. Liver International 27: 440–450. doi: 10.1111/j.1478-3231.2007.01475.x.PubMedCrossRefGoogle Scholar
  108. Marí, M., F. Caballero, A. Colell, A. Morales, J. Caballeria, A. Fernandez, C. Enrich, J.C. Fernandez-Checa, and C. García-Ruiz. 2006. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metabolism 4: 185–198. doi: 10.1016/j.cmet.2006.07.006.PubMedCrossRefGoogle Scholar
  109. Marí, M., A. Colell, A. Morales, F. Caballero, A. Moles, A. Fernández, O. Terrones, G. Basañez, B. Antonsson, C. García-Ruiz, and J.C. Fernández-Checa. 2008. Mechanism of mitochondrial glutathione-dependent hepatocellular susceptibility to TNF despite NF-kappaB activation. Gastroenterology 134: 1507–1520. doi: 10.1053/j.gastro.2008.01.073.PubMedCrossRefGoogle Scholar
  110. Masuoka, H.C., J. Mott, S.F. Bronk, N.W. Werneburg, Y. Akazawa, S.H. Kaufmann, and G.J. Gores. 2009. Mcl-1 degradation during hepatocyte lipoapoptosis. The Journal of Biological Chemistry 284: 30039–30048. doi: 10.1074/jbc.M109.039545.PubMedPubMedCentralCrossRefGoogle Scholar
  111. McPherson, S., S.F. Stewart, E. Henderson, A.D. Burt, and C.P. Day. 2010. Simple non-invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease. Gut 59: 1265–1269. doi: 10.1136/gut.2010.216077.PubMedCrossRefGoogle Scholar
  112. McPherson, S., Q.M. Anstee, E. Henderson, C.P. Day, and A.D. Burt. 2013. Are simple noninvasive scoring systems for fibrosis reliable in patients with NAFLD and normal ALT levels? European Journal of Gastroenterology & Hepatology 25: 652–658. doi: 10.1097/MEG.0b013e32835d72cf.CrossRefGoogle Scholar
  113. Mehrpour, M., A. Esclatine, I. Beau, and P. Codogno. 2010. Autophagy in health and disease. 1. Regulation and significance of autophagy: An overview. American Journal of Physiology. Cell Physiology 298: C776–C785. doi: 10.1152/ajpcell.00507.2009.PubMedCrossRefGoogle Scholar
  114. Miquilena-Colina, M.E., E. Lima-Cabello, S. Sánchez-Campos, M.V. García-Mediavilla, M. Fernández-Bermejo, T. Lozano-Rodríguez, J. Vargas-Castrillón, X. Buqué, B. Ochoa, P. Aspichueta, J. González-Gallego, and C. García-Monzón. 2011. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut 60: 1394–1402. doi: 10.1136/gut.2010.222844.PubMedCrossRefGoogle Scholar
  115. Molteni, S.N., A. Fassio, M.R. Ciriolo, G. Filomeni, E. Pasqualetto, C. Fagioli, and R. Sitia. 2004. Glutathione limits Ero1-dependent oxidation in the endoplasmic reticulum. The Journal of Biological Chemistry 279: 32667–32673. doi: 10.1074/jbc.M404992200.PubMedCrossRefGoogle Scholar
  116. Monetti, M., M.C. Levin, M.J. Watt, M.P. Sajan, S. Marmor, B.K. Hubbard, R.D. Stevens, J.R. Bain, C.B. Newgard, R.V. Farese, A.L. Hevener, and R.V. Farese. 2007. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metabolism 6: 69–78. doi: 10.1016/j.cmet.2007.05.005.PubMedCrossRefGoogle Scholar
  117. Mota, M., B.A. Banini, S.C. Cazanave, and A.J. Sanyal. 2016. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism 65: 1049–1061. doi: 10.1016/j.metabol.2016.02.014.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Nakahira, K., J.A. Haspel, V.A.K. Rathinam, S.-J. Lee, T. Dolinay, H.C. Lam, J.A. Englert, M. Rabinovitch, M. Cernadas, H.P. Kim, K.A. Fitzgerald, S.W. Ryter, and A.M.K. Choi. 2011. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology 12: 222–230. doi: 10.1038/ni.1980.PubMedCrossRefGoogle Scholar
  119. Narce, M., J. Bellenger, M. Rialland, and S. Bellenger. 2012. Recent advances on stearoyl-Coa desaturase regulation in fatty liver diseases. Current Drug Metabolism 13: 1454–1463.PubMedCrossRefGoogle Scholar
  120. Nehra, V., P. Angulo, A.L. Buchman, and K.D. Lindor. 2001. Nutritional and metabolic considerations in the etiology of nonalcoholic steatohepatitis. Digestive Diseases and Sciences 46: 2347–2352.PubMedCrossRefGoogle Scholar
  121. Neuschwander-Tetri, B.A., and S.H. Caldwell. 2003. Nonalcoholic steatohepatitis: Summary of an AASLD Single Topic Conference. Hepatology 37: 1202–1219. doi: 10.1053/jhep.2003.50193.PubMedCrossRefGoogle Scholar
  122. Nguyen, T., P. Nioi, and C.B. Pickett. 2009. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. The Journal of Biological Chemistry 284: 13291–13295. doi: 10.1074/jbc.R900010200.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Okumura, T. 2011. Role of lipid droplet proteins in liver steatosis. Journal of Physiology and Biochemistry 67: 629–636. doi: 10.1007/s13105-011-0110-6.PubMedCrossRefGoogle Scholar
  124. Osei-Hyiaman, D., J. Liu, L. Zhou, G. Godlewski, J. Harvey-White, W. Jeong, S. Bátkai, G. Marsicano, B. Lutz, C. Buettner, and G. Kunos. 2008. Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice. The Journal of Clinical Investigation 118: 3160–3169. doi: 10.1172/JCI34827.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Oyadomari, S., and M. Mori. 2004. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death and Differentiation 11: 381–389. doi: 10.1038/sj.cdd.4401373.PubMedCrossRefGoogle Scholar
  126. Palmieri, V.O., I. Grattagliano, P. Portincasa, and G. Palasciano. 2006. Systemic oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome. The Journal of Nutrition 136: 3022–3026.PubMedGoogle Scholar
  127. Panasiuk, A., J. Dzieciol, B. Panasiuk, and D. Prokopowicz. 2006. Expression of p53, Bax and Bcl-2 proteins in hepatocytes in non-alcoholic fatty liver disease. World Journal of Gastroenterology 12: 6198–6202.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Patti, M.-E., and S. Corvera. 2010. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocrine Reviews 31: 364–395. doi: 10.1210/er.2009-0027.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Pérez-Carreras, M., P. Del Hoyo, M.A. Martín, J.C. Rubio, A. Martín, G. Castellano, F. Colina, J. Arenas, and J.A. Solis-Herruzo. 2003. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology 38: 999–1007. doi: 10.1053/jhep.2003.50398.PubMedCrossRefGoogle Scholar
  130. Perlemuter, G., A. Davit-Spraul, C. Cosson, M. Conti, A. Bigorgne, V. Paradis, M.-P. Corre, L. Prat, V. Kuoch, A. Basdevant, G. Pelletier, J.-M. Oppert, and C. Buffet. 2005. Increase in liver antioxidant enzyme activities in non-alcoholic fatty liver disease. Liver International 25: 946–953. doi: 10.1111/j.1478-3231.2005.01126.x.PubMedCrossRefGoogle Scholar
  131. Perseghin, G. 2009. Viewpoints on the way to a consensus session: Where does insulin resistance start? The liver. Diabetes Care 32(Suppl 2): S164–S167. doi: 10.2337/dc09-S303.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Pessayre, D., and B. Fromenty. 2005. NASH: A mitochondrial disease. Journal of Hepatology 42: 928–940. doi: 10.1016/j.jhep.2005.03.004.PubMedCrossRefGoogle Scholar
  133. Pessayre, D., B. Fromenty, and A. Mansouri. 2004. Mitochondrial injury in steatohepatitis. European Journal of Gastroenterology & Hepatology 16: 1095–1105.CrossRefGoogle Scholar
  134. Petersen, K.F., S. Dufour, A. Hariri, C. Nelson-Williams, J.N. Foo, X.-M. Zhang, J. Dziura, R.P. Lifton, and G.I. Shulman. 2010. Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. The New England Journal of Medicine 362: 1082–1089. doi: 10.1056/NEJMoa0907295.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Petta, S., M.C. Amato, V. Di Marco, C. Cammà, G. Pizzolanti, M.R. Barcellona, D. Cabibi, A. Galluzzo, D. Sinagra, C. Giordano, and A. Craxì. 2012. Visceral adiposity index is associated with significant fibrosis in patients with non-alcoholic fatty liver disease. Alimentary Pharmacology & Therapeutics 35: 238–247. doi: 10.1111/j.1365-2036.2011.04929.x.CrossRefGoogle Scholar
  136. Pollard, M.G., K.J. Travers, and J.S. Weissman. 1998. Ero1p: A novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Molecular Cell 1: 171–182.PubMedCrossRefGoogle Scholar
  137. Postic, C., and J. Girard. 2008. The role of the lipogenic pathway in the development of hepatic steatosis. Diabetes & Metabolism 34: 643–648. doi: 10.1016/S1262-3636(08)74599-3.CrossRefGoogle Scholar
  138. Poupeau, A., and C. Postic. 2011. Cross-regulation of hepatic glucose metabolism via ChREBP and nuclear receptors. Biochimica et Biophysica Acta 1812: 995–1006. doi: 10.1016/j.bbadis.2011.03.015.PubMedCrossRefGoogle Scholar
  139. Puri, P., R.A. Baillie, M.M. Wiest, F. Mirshahi, J. Choudhury, O. Cheung, C. Sargeant, M.J. Contos, and A.J. Sanyal. 2007. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46: 1081–1090. doi: 10.1002/hep.21763.PubMedCrossRefGoogle Scholar
  140. Puri, P., F. Mirshahi, O. Cheung, R. Natarajan, J.W. Maher, J.M. Kellum, and A.J. Sanyal. 2008. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 134: 568–576. doi: 10.1053/j.gastro.2007.10.039.PubMedCrossRefGoogle Scholar
  141. Raddatz, K., N. Turner, G. Frangioudakis, B.M. Liao, D.J. Pedersen, J. Cantley, D. Wilks, E. Preston, B.D. Hegarty, M. Leitges, M.J. Raftery, T.J. Biden, and C. Schmitz-Peiffer. 2011. Time-dependent effects of Prkce deletion on glucose homeostasis and hepatic lipid metabolism on dietary lipid oversupply in mice. Diabetologia 54: 1447–1456. doi: 10.1007/s00125-011-2073-0.PubMedCrossRefGoogle Scholar
  142. Rector, R.S., J.P. Thyfault, G.M. Uptergrove, E.M. Morris, S.P. Naples, S.J. Borengasser, C.R. Mikus, M.J. Laye, M.H. Laughlin, F.W. Booth, and J.A. Ibdah. 2010. Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model. Journal of Hepatology 52: 727–736. doi: 10.1016/j.jhep.2009.11.030.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Repa, J.J., G. Liang, J. Ou, Y. Bashmakov, J.M. Lobaccaro, I. Shimomura, B. Shan, M.S. Brown, J.L. Goldstein, and D.J. Mangelsdorf. 2000. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes & Development 14: 2819–2830.CrossRefGoogle Scholar
  144. Rolo, A.P., J.S. Teodoro, and C.M. Palmeira. 2012. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radical Biology & Medicine 52: 59–69. doi: 10.1016/j.freeradbiomed.2011.10.003.CrossRefGoogle Scholar
  145. Sajan, M.P., R.A. Ivey, M.C. Lee, and R.V. Farese. 2015. Hepatic insulin resistance in ob/ob mice involves increases in ceramide, aPKC activity, and selective impairment of Akt-dependent FoxO1 phosphorylation. Journal of Lipid Research 56: 70–80. doi: 10.1194/jlr.M052977.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Samad, F., L. Badeanlou, C. Shah, and G. Yang. 2011. Adipose tissue and ceramide biosynthesis in the pathogenesis of obesity. Advances in Experimental Medicine and Biology 721: 67–86. doi: 10.1007/978-1-4614-0650-1_5.PubMedCrossRefGoogle Scholar
  147. Samuel, V.T., and G.I. Shulman. 2012. Mechanisms for insulin resistance: Common threads and missing links. Cell 148: 852–871. doi: 10.1016/j.cell.2012.02.017.
  148. Sanyal, A.J., C. Campbell-Sargent, F. Mirshahi, W.B. Rizzo, M.J. Contos, R.K. Sterling, V.A. Luketic, M.L. Shiffman, and J.N. Clore. 2001. Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120: 1183–1192. doi: 10.1053/gast.2001.23256.PubMedCrossRefGoogle Scholar
  149. Satapati, S., N.E. Sunny, B. Kucejova, X. Fu, T.T. He, A. Méndez-Lucas, J.M. Shelton, J.C. Perales, J.D. Browning, and S.C. Burgess. 2012. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. Journal of Lipid Research 53: 1080–1092. doi: 10.1194/jlr.M023382.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Savage, D.B., C.S. Choi, V.T. Samuel, Z.-X. Liu, D. Zhang, A. Wang, X.-M. Zhang, G.W. Cline, X.X. Yu, J.G. Geisler, S. Bhanot, B.P. Monia, and G.I. Shulman. 2006. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. The Journal of Clinical Investigation 116: 817–824. doi: 10.1172/JCI27300.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Schattenberg, J.M., R. Singh, Y. Wang, J.H. Lefkowitch, R.M. Rigoli, P.E. Scherer, and M.J. Czaja. 2006. JNK1 but not JNK2 promotes the development of steatohepatitis in mice. Hepatology 43: 163–172. doi: 10.1002/hep.20999.PubMedCrossRefGoogle Scholar
  152. Schmid, A.I., J. Szendroedi, M. Chmelik, M. Krssák, E. Moser, and M. Roden. 2011. Liver ATP synthesis is lower and relates to insulin sensitivity in patients with type 2 diabetes. Diabetes Care 34: 448–453. doi: 10.2337/dc10-1076.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Schultz, J.R., H. Tu, A. Luk, J.J. Repa, J.C. Medina, L. Li, S. Schwendner, S. Wang, M. Thoolen, D.J. Mangelsdorf, K.D. Lustig, and B. Shan. 2000. Role of LXRs in control of lipogenesis. Genes & Development 14: 2831–2838.CrossRefGoogle Scholar
  154. Seki, S., T. Kitada, T. Yamada, H. Sakaguchi, K. Nakatani, and K. Wakasa. 2002. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. Journal of Hepatology 37: 56–62.PubMedCrossRefGoogle Scholar
  155. Serviddio, G., J. Sastre, F. Bellanti, J. Viña, G. Vendemiale, and E. Altomare. 2008. Mitochondrial involvement in non-alcoholic steatohepatitis. Molecular Aspects of Medicine 29: 22–35. doi: 10.1016/j.mam.2007.09.014.PubMedCrossRefGoogle Scholar
  156. Sevier, C.S., H. Qu, N. Heldman, E. Gross, D. Fass, and C.A. Kaiser. 2007. Modulation of cellular disulfide-bond formation and the ER redox environment by feedback regulation of Ero1. Cell 129: 333–344. doi: 10.1016/j.cell.2007.02.039.PubMedCrossRefGoogle Scholar
  157. Shen, X., R.E. Ellis, K. Sakaki, and R.J. Kaufman. 2005. Genetic interactions due to constitutive and inducible gene regulation mediated by the unfolded protein response in C. elegans. PLoS Genetics 1: e37. doi: 10.1371/journal.pgen.0010037.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Shimomura, I., M. Matsuda, R.E. Hammer, Y. Bashmakov, M.S. Brown, and J.L. Goldstein. 2000. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Molecular Cell 6: 77–86.PubMedCrossRefGoogle Scholar
  159. Singh, R., and M.J. Czaja. 2007. Regulation of hepatocyte apoptosis by oxidative stress. Journal of Gastroenterology and Hepatology 22(Suppl 1): S45–S48. doi: 10.1111/j.1440-1746.2006.04646.x.PubMedCrossRefGoogle Scholar
  160. Singh, R., S. Kaushik, Y. Wang, Y. Xiang, I. Novak, M. Komatsu, K. Tanaka, A.M. Cuervo, and M.J. Czaja. 2009a. Autophagy regulates lipid metabolism. Nature 458: 1131–1135. doi: 10.1038/nature07976.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Singh, R., Y. Wang, J.M. Schattenberg, Y. Xiang, and M.J. Czaja. 2009b. Chronic oxidative stress sensitizes hepatocytes to death from 4-hydroxynonenal by JNK/c-Jun overactivation. American Journal of Physiology. Gastrointestinal and Liver Physiology 297: G907–G917.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Singh, R., Y. Wang, Y. Xiang, K.E. Tanaka, W.A. Gaarde, and M.J. Czaja. 2009c. Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology 49: 87–96. doi: 10.1002/hep.22578.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Siskind, L.J., R.N. Kolesnick, and M. Colombini. 2002. Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. The Journal of Biological Chemistry 277: 26796–26803. doi: 10.1074/jbc.M200754200.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Steneberg, P., A.G. Sykaras, F. Backlund, J. Straseviciene, I. Söderström, and H. Edlund. 2015. Hyperinsulinemia enhances hepatic expression of the fatty acid transporter Cd36 and provokes hepatosteatosis and hepatic insulin resistance. The Journal of Biological Chemistry 290: 19034–19043. doi: 10.1074/jbc.M115.640292.PubMedPubMedCentralCrossRefGoogle Scholar
  165. Sugimoto, H., K. Okada, J. Shoda, E. Warabi, K. Ishige, T. Ueda, K. Taguchi, T. Yanagawa, A. Nakahara, I. Hyodo, T. Ishii, and M. Yamamoto. 2010. Deletion of nuclear factor-E2-related factor-2 leads to rapid onset and progression of nutritional steatohepatitis in mice. American Journal of Physiology. Gastrointestinal and Liver Physiology 298: G283–G294. doi: 10.1152/ajpgi.00296.2009.PubMedCrossRefGoogle Scholar
  166. Summers, S.A. 2006. Ceramides in insulin resistance and lipotoxicity. Progress in Lipid Research 45: 42–72. doi: 10.1016/j.plipres.2005.11.002.PubMedCrossRefGoogle Scholar
  167. Tacke, F., T. Luedde, and C. Trautwein. 2009. Inflammatory pathways in liver homeostasis and liver injury. Clinical Reviews in Allergy & Immunology 36: 4–12. doi: 10.1007/s12016-008-8091-0.CrossRefGoogle Scholar
  168. Takahashi, Y., K. Sugimoto, H. Inui, and T. Fukusato. 2015. Current pharmacological therapies for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World Journal of Gastroenterology 21: 3777–3785. doi: 10.3748/wjg.v21.i13.3777.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Treeprasertsuk, S., E. Björnsson, F. Enders, S. Suwanwalaikorn, and K.D. Lindor. 2013. NAFLD fibrosis score: A prognostic predictor for mortality and liver complications among NAFLD patients. World Journal of Gastroenterology 19: 1219–1229. doi: 10.3748/wjg.v19.i8.1219.PubMedPubMedCentralCrossRefGoogle Scholar
  170. Tu, B.P., and J.S. Weissman. 2004. Oxidative protein folding in eukaryotes: Mechanisms and consequences. The Journal of Cell Biology 164: 341–346. doi: 10.1083/jcb.200311055.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Tyagi, S., P. Gupta, A.S. Saini, C. Kaushal, and S. Sharma. 2011. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. Journal of Advanced Pharmaceutical Technology & Research 2: 236–240. doi: 10.4103/2231-4040.90879.CrossRefGoogle Scholar
  172. Valenti, L., A. Al-Serri, A.K. Daly, E. Galmozzi, R. Rametta, P. Dongiovanni, V. Nobili, E. Mozzi, G. Roviaro, E. Vanni, E. Bugianesi, M. Maggioni, A.L. Fracanzani, S. Fargion, and C.P. Day. 2010. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 51: 1209–1217. doi: 10.1002/hep.23622.PubMedCrossRefGoogle Scholar
  173. Vallin, M., O. Guillaud, O. Boillot, V. Hervieu, J.-Y. Scoazec, and J. Dumortier. 2014. Recurrent or de novo nonalcoholic fatty liver disease after liver transplantation: Natural history based on liver biopsy analysis. Liver Transplantation 20: 1064–1071. doi: 10.1002/lt.23936.PubMedCrossRefGoogle Scholar
  174. Vanni, E., E. Bugianesi, A. Kotronen, S. De Minicis, H. Yki-Järvinen, and G. Svegliati-Baroni. 2010. From the metabolic syndrome to NAFLD or vice versa? Digestive and Liver Disease 42: 320–330. doi: 10.1016/j.dld.2010.01.016.PubMedCrossRefGoogle Scholar
  175. Verma, S., D. Jensen, J. Hart, and S.R. Mohanty. 2013. Predictive value of ALT levels for non-alcoholic steatohepatitis (NASH) and advanced fibrosis in non-alcoholic fatty liver disease (NAFLD). Liver International 33: 1398–1405. doi: 10.1111/liv.12226.PubMedCrossRefGoogle Scholar
  176. Verna, E.C., and P.D. Berk. 2008. Role of fatty acids in the pathogenesis of obesity and fatty liver: Impact of bariatric surgery. Seminars in Liver Disease 28: 407–426. doi: 10.1055/s-0028-1091985.PubMedCrossRefGoogle Scholar
  177. Vernon, G., A. Baranova, and Z.M. Younossi. 2011. Systematic review: The epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Alimentary Pharmacology & Therapeutics 34: 274–285. doi: 10.1111/j.1365-2036.2011.04724.x.CrossRefGoogle Scholar
  178. Videla, L.A., R. Rodrigo, M. Orellana, V. Fernandez, G. Tapia, L. Quiñones, N. Varela, J. Contreras, R. Lazarte, A. Csendes, J. Rojas, F. Maluenda, P. Burdiles, J.C. Diaz, G. Smok, L. Thielemann, and J. Poniachik. 2004. Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clinical Science (London, England) 1979(106): 261–268. doi: 10.1042/CS20030285.CrossRefGoogle Scholar
  179. Vongsuvanh, R., J. George, D. McLeod, and D. van der Poorten. 2012. Visceral adiposity index is not a predictor of liver histology in patients with non-alcoholic fatty liver disease. Journal of Hepatology 57: 392–398. doi: 10.1016/j.jhep.2012.03.013.PubMedCrossRefGoogle Scholar
  180. Wang, Y., R. Singh, Y. Xiang, and M.J. Czaja. 2010. Macroautophagy and chaperone-mediated autophagy are required for hepatocyte resistance to oxidant stress. Hepatology 52: 266–277. doi: 10.1002/hep.23645.PubMedPubMedCentralCrossRefGoogle Scholar
  181. Wang, C., Y. Zhao, X. Gao, L. Li, Y. Yuan, F. Liu, L. Zhang, J. Wu, P. Hu, X. Zhang, Y. Gu, Y. Xu, Z. Wang, Z. Li, H. Zhang, and J. Ye. 2015. Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis. Hepatology 61: 870–882. doi: 10.1002/hep.27409.PubMedCrossRefGoogle Scholar
  182. Wong, R.J., M. Aguilar, R. Cheung, R.B. Perumpail, S.A. Harrison, Z.M. Younossi, and A. Ahmed. 2015. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 148: 547–555. doi: 10.1053/j.gastro.2014.11.039.PubMedCrossRefGoogle Scholar
  183. Wu, J., D.T. Rutkowski, M. Dubois, J. Swathirajan, T. Saunders, J. Wang, B. Song, G.D.-Y. Yau, and R.J. Kaufman. 2007. ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Developmental Cell 13: 351–364. doi: 10.1016/j.devcel.2007.07.005.PubMedCrossRefGoogle Scholar
  184. Yamaguchi, H., and H.-G. Wang. 2004. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. The Journal of Biological Chemistry 279: 45495–45502. doi: 10.1074/jbc.M406933200.PubMedCrossRefGoogle Scholar
  185. Yecies, J.L., H.H. Zhang, S. Menon, S. Liu, D. Yecies, A.I. Lipovsky, C. Gorgun, D.J. Kwiatkowski, G.S. Hotamisligil, C.-H. Lee, and B.D. Manning. 2011. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metabolism 14: 21–32. doi: 10.1016/j.cmet.2011.06.002.PubMedPubMedCentralCrossRefGoogle Scholar
  186. Yetukuri, L., M. Katajamaa, G. Medina-Gomez, T. Seppänen-Laakso, A. Vidal-Puig, and M. Oresic. 2007. Bioinformatics strategies for lipidomics analysis: Characterization of obesity related hepatic steatosis. BMC Systems Biology 1: 12. doi: 10.1186/1752-0509-1-12.PubMedPubMedCentralCrossRefGoogle Scholar
  187. Zámbó, V., L. Simon-Szabó, P. Szelényi, E. Kereszturi, G. Bánhegyi, and M. Csala. 2013. Lipotoxicity in the liver. World Journal of Hepatology 5: 550–557. doi: 10.4254/wjh.v5.i10.550.PubMedPubMedCentralGoogle Scholar
  188. Zezos, P., and E.L. Renner. 2014. Liver transplantation and non-alcoholic fatty liver disease. World Journal of Gastroenterology 20: 15532–15538. doi: 10.3748/wjg.v20.i42.15532.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Zhang, D., Z.-X. Liu, C.S. Choi, L. Tian, R. Kibbey, J. Dong, G.W. Cline, P.A. Wood, and G.I. Shulman. 2007. Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance. Proceedings of the National Academy of Sciences of the United States of America 104: 17075–17080. doi: 10.1073/pnas.0707060104.PubMedPubMedCentralCrossRefGoogle Scholar
  190. Zhou, R., A.S. Yazdi, P. Menu, and J. Tschopp. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469: 221–225. doi: 10.1038/nature09663.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Medicine, Department of General SurgeryGazi UniversityBesevlerTurkey
  2. 2.CankayaTurkey

Personalised recommendations