Approximating the Size of a Radio Network in Beeping Model

  • Philipp Brandes
  • Marcin Kardas
  • Marek Klonowski
  • Dominik Pająk
  • Roger Wattenhofer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9988)

Abstract

In a single-hop radio network, nodes can communicate with each other by broadcasting to a shared wireless channel. In each time slot, all nodes receive feedback from the channel depending on the number of transmitters. In the Beeping Model, each node learns whether zero or at least one node have transmitted. In such a model, a procedure estimating the size of the network can be used for efficiently solving the problems of leader election or conflict resolution. We introduce a time-efficient uniform algorithm for size estimation of single-hop networks. With probability at least \(1-1/f\) our solution returns \((1+\varepsilon )\)-approximation of the network size n within \(\mathcal {O}\left( \log \log n+\log f/\varepsilon ^2\right) \) time slots. We prove that the algorithm is asymptotically time-optimal for any constant \(\varepsilon >0\).

References

  1. 1.
    Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a maximal independent set. Distrib. Comput. 26(4), 195–208 (2013)CrossRefMATHGoogle Scholar
  2. 2.
    Bordim, J.L., Cui, J., Hayashi, T., Nakano, K., Olariu, S.: Energy-efficient initialization protocols for ad-hoc radio networks. In: Aggarwal, A., Pandu Rangan, C. (eds.) Algorithms and Computation. LNCS, vol. 1741, pp. 215–224. Springer, Heidelberg (1999). doi:10.1007/3-540-46632-0_23 CrossRefGoogle Scholar
  3. 3.
    Caragiannis, I., Galdi, C., Kaklamanis, C.: Basic computations in wireless networks. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 533–542. Springer, Heidelberg (2005). http://dx.doi.org/10.1007/11602613_54 CrossRefGoogle Scholar
  4. 4.
    Chakrabarti, A., Regev, O.: An optimal lower bound on the communication complexity of gap-hamming-distance. In: Fortnow, L., Vadhan, S.P. (eds.) Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6–8 June 2011, pp. 51–60. ACM (2011). http://doi.acm.org/10.1145/1993636.1993644
  5. 5.
    Chassaing, P., Gerin, L.: Efficient estimation of the cardinality of large data sets. In: 4th Colloquium on Mathematics and Computer Science, DMTCS Proceedings, pp. 419–422 (2006)Google Scholar
  6. 6.
    Chen, B., Zhou, Z., Yu, H.: Understanding RFID counting protocols. In: Helal, S., Chandra, R., Kravets, R. (eds.) The 19th Annual International Conference on Mobile Computing and Networking, MobiCom 2013, Miami, FL, USA, 30 September–04 October 2013, pp. 291–302. ACM (2013). http://doi.acm.org/10.1145/2500423.2500431
  7. 7.
    Cichoń, J., Lemiesz, J., Szpankowski, W., Zawada, M.: Two-phase cardinality estimation protocols for sensor networks with provable precision. In: Proceedings of WCNC 2012, Paris, France. IEEE (2012)Google Scholar
  8. 8.
    Cichoń, J., Lemiesz, J., Zawada, M.: On size estimation protocols for sensor networks. In: Proceedings of the 51th IEEE Conference on Decision and Control, CDC 10–13, Maui, HI, USA. pp. 5234–5239, Proceedings of 51st Annual Conference on Decision and Control (CDC). IEEE, December 2012Google Scholar
  9. 9.
    Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 148–162. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Flajolet, P., Fusy, E., Gandouet, O., Meunier, F.: Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm. In: Proceedings of the Conference on Analysis of Algorithms (AofA 2007), pp. 127–146 (2007)Google Scholar
  11. 11.
    Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for data base applications. J. Comput. Syst. Sci. 31(2), 182–209 (1985)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Giroire, F.: Order statistics and estimating cardinalities of massive data sets. Discrete Appl. Math. 157(2), 406–427 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Greenberg, A.G., Flajolet, P., Ladner, R.E.: Estimating the multiplicities of conflicts to speed their resolution in multiple access channels. J. ACM 34(2), 289–325 (1987). http://doi.acm.org/10.1145/23005.23006 MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Han, H., Sheng, B., Tan, C.C., Li, Q., Mao, W., Lu, S.: Counting RFID tags efficiently and anonymously. In: 29th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2010, 15–19 March 2010, San Diego, CA, USA, pp. 1028–1036. IEEE (2010). http://dx.doi.org/10.1109/INFCOM.2010.5461944
  15. 15.
    Jurdziński, T., Kutyłowski, M., Zatopianski, J.: Energy-efficient size approximation of radio networks with no collision detection. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 279–289. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Kabarowski, J., Kutyłowski, M., Rutkowski, W.: Adversary immune size approximation of single-hop radio networks. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 148–158. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Kodialam, M.S., Nandagopal, T.: Fast and reliable estimation schemes in RFID systems. In: Gerla, M., Petrioli, C., Ramjee, R. (eds.) Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, MOBICOM 2006, Los Angeles, CA, USA, 23–29 September 2006, pp. 322–333. ACM (2006). http://doi.acm.org/10.1145/1161089.1161126
  18. 18.
    Kodialam, M.S., Nandagopal, T., Lau, W.C.: Anonymous tracking using RFID tags. In: 26th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2007, Anchorage, Alaska, USA, 6–12 May 2007, pp. 1217–1225. IEEE (2007). http://dx.doi.org/10.1109/INFCOM.2007.145
  19. 19.
    Nakano, K., Olariu, S.: Energy-efficient initialization protocols for single-hop radio networks with no collision detection. IEEE Trans. Parallel Distrib. Syst. 11(8), 851–863 (2000)CrossRefGoogle Scholar
  20. 20.
    Nakano, K., Olariu, S.: Uniform leader election protocols for radio networks. IEEE Trans. Parallel Distrib. Syst. 13(5), 516–526 (2002). http://doi.ieeecomputersociety.org/10.1109/TPDS.2002.1003864 CrossRefGoogle Scholar
  21. 21.
    Qian, C., Ngan, H., Liu, Y., Ni, L.M.: Cardinality estimation for large-scale RFID systems. IEEE Trans. Parallel Distrib. Syst. 22(9), 1441–1454 (2011). http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.36 CrossRefGoogle Scholar
  22. 22.
    Shahzad, M., Liu, A.X.: Every bit counts: fast and scalable RFID estimation. In: Akan, Ö.B., Ekici, E., Qiu, L., Snoeren, A.C. (eds.) The 18th Annual International Conference on Mobile Computing and Networking, Mobicom 2012, Istanbul, Turkey, 22–26 August 2012, pp. 365–376. ACM (2012). http://doi.acm.org/10.1145/2348543.2348588
  23. 23.
    Whang, K.Y., Zanden, B.T.V., Taylor, H.M.: A linear-time probabilistic counting algorithm for database applications. ACM Trans. Database Syst. 15(2), 208–229 (1990)CrossRefGoogle Scholar
  24. 24.
    Willard, D.E.: Log-logarithmic selection resolution protocols in a multiple access channel. SIAM J. Comput. 15(2), 468–477 (1986). http://dx.doi.org/10.1137/0215032 MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Zheng, Y., Li, M.: ZOE: fast cardinality estimation for large-scale RFID systems. In: Proceedings of the IEEE INFOCOM 2013, Turin, Italy, 4–19 April 2013, pp. 908–916. IEEE (2013). http://dx.doi.org/10.1109/INFCOM.2013.6566879

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Philipp Brandes
    • 1
  • Marcin Kardas
    • 2
  • Marek Klonowski
    • 2
  • Dominik Pająk
    • 2
  • Roger Wattenhofer
    • 1
  1. 1.ETH ZürichZürichSwitzerland
  2. 2.Department of Computer Science at the Faculty of Fundamental Problems of TechnologyWrocław University of Science and TechnologyWrocławPoland

Personalised recommendations