Whom to Befriend to Influence People

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9988)

Abstract

Alice wants to join a new social network, and influence its members to adopt a new product or idea. Each person v in the network has a certain threshold t(v) for activation, i.e. adoption of the product or idea. If v has at least t(v) activated neighbors, then v will also become activated. If Alice wants to activate the entire social network, whom should she befriend? We study the problem of finding the minimum number of links that Alice should form to people in the network, in order to activate the entire social network. This Minimum Links Problem has applications in viral marketing and the study of epidemics. We show that the solution can be quite different from the related and widely studied Target Set Selection problem. We prove that the Minimum Links problem is NP-complete, in fact it is hard to approximate to within an \(\epsilon \ln n\) factor for some constant \(\epsilon \), even for graphs with degree 3 and with threshold at most 2. In contrast, we give linear time algorithms to solve the problem for trees, cycles, and cliques, and give precise bounds on the number of links needed.

References

  1. 1.
    Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discrete Optim. 8, 702–715 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Maximizing social influence in nearly optimal time. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pp. 946–957 (2014)Google Scholar
  3. 3.
    Brown, J.J., Reingen, P.H.: Social ties and word-of-mouth referral behavior. J. Consum. Res. 14(3), 350–362 (1987)CrossRefGoogle Scholar
  4. 4.
    Chen, N.: On the approximability of influence in social networks. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 1029–1037 (2008)Google Scholar
  5. 5.
    Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 199–208 (2009)Google Scholar
  6. 6.
    Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Peters, J.G., Vaccaro, U.: How to go viral: cheaply and quickly. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS, vol. 8496, pp. 100–112. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Vaccaro, U.: Latency-bounded target set selection in social networks. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 65–77. Springer, Heidelberg (2013)Google Scholar
  8. 8.
    Demaine, E.D., Hajiaghayi, M.T., Mahini, H., Malec, D.L., Raghavan, S., Sawant, A., Zadimoghadam, M.: How to influence people with partial incentives. In: Proceedings of the 23rd International Conference on World Wide Web, WWW 2014, pp. 937–948 (2014)Google Scholar
  9. 9.
    Dinh, T., Zhang, H., Nguyen, D., Thai, M.: Cost-effective viral marketing for time-critical campaigns in large-scale social networks. IEEE ACM Trans. Netw. PP(99), 1 (2014)Google Scholar
  10. 10.
    Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 624–633. ACM (2014)Google Scholar
  11. 11.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2001, pp. 57–66 (2001)Google Scholar
  12. 12.
    Fazli, M.A., Ghodsi, M., Habibi, J., Jalaly Khalilabadi, P., Mirrokni, V., Sadeghabad, S.S.: On the non-progressive spread of influence through social networks. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 315–326. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Gargano, L., Hell, P., Peters, J., Vaccaro, U.: Influence diffusion in social networks under time window constraints. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 141–152. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. Lett. 12, 211–223 (2001)CrossRefGoogle Scholar
  15. 15.
    Goyal, A., Bonchi, F., Lakshmanan, L., Venkatasubramanian, S.: On minimizing budget and time in influence propagation over social networks. Soc. Netw. Anal. Min. 3, 179–192 (2013)CrossRefGoogle Scholar
  16. 16.
    Goyal, A., Bonchi, F., Lakshmanan, L.: A data-based approach to social influence maximization. Proc. VLDB Endow. 5, 73–84 (2011)CrossRefGoogle Scholar
  17. 17.
    Goyal, A., Lu, W., Lakshmanan, L.: Celf++: optimizing the greedy algorithm for influence maximization in social networks. In: Proceedings of the 20th International Conference Companion on World Wide Web, WWW 2011, pp. 47–48 (2011)Google Scholar
  18. 18.
    He, J., Ji, S., Beyah, R., Cai, Z.: Minimum-sized influential node set selection for social networks under the independent cascade model. In: Proceedings of the 15th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc 2014, pp. 93–102 (2014)Google Scholar
  19. 19.
    Dreyer Jr., P., Roberts, F.: Irreversible -threshold processes: graph-theoretical threshold models of the spread of disease and of opinion. Discrete Appl. Math. 157(7), 1615–1627 (2009)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 137–146 (2003)Google Scholar
  21. 21.
    Kempe, D., Kleinberg, J.M., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. In: Proceedings of the 7th ACM Conference on Electronic Commerce, pp. 228–237. ACM (2006)Google Scholar
  23. 23.
    Lu, W., Bonchi, F., Goyal, A., Lakshmanan, L.: The bang for the buck: fair competitive viral marketing from the host perspective. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, pp. 928–936 (2013)Google Scholar
  24. 24.
    Lv, S., Pan, L.: Influence maximization in independent cascade model with limited propagation distance. In: Han, W., Huang, Z., Hu, C., Zhang, H., Guo, L. (eds.) APWeb 2014 Workshops. LNCS, vol. 8710, pp. 23–34. Springer, Heidelberg (2014)Google Scholar
  25. 25.
    Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of target set selection. Soc. Netw. Anal. Min. 3(2), 233–256 (2012)CrossRefMATHGoogle Scholar
  26. 26.
    Peleg, D.: Local majority voting, small coalitions and controlling monopolies in graphs: a review. Theor. Comput. Sci. 282, 231–257 (2002)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2002, pp. 61–70 (2002)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Computer Science and Operational ResearchUniversité de MontréalMontréalCanada
  2. 2.Department of Computer Science and Software EngineeringConcordia UniversityMontréalCanada

Personalised recommendations