Communication Problems for Mobile Agents Exchanging Energy

  • Jurek Czyzowicz
  • Krzysztof Diks
  • Jean Moussi
  • Wojciech Rytter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9988)

Abstract

A set of mobile agents is deployed in the nodes of an edge-weighted network. Agents originally possess amounts of energy, possibly different for all agents. The agents travel in the network spending energy proportional to the distance traversed. Some nodes of the network may keep information which is acquired by the agents visiting them. The meeting agents may exchange currently possessed information, as well as any amount of energy. We consider communication problems when the information initially held by some network nodes have to be communicated to some other nodes and/or agents. The paper deals with two communication problems: data delivery and convergecast. These problems are posed for a centralized scheduler which has full knowledge of the instance. It is already known that, without energy exchange, both problems are NP-complete even if the network is a line. In this paper we show that, if the agents are allowed to exchange energy, both problems have linear-time solutions on trees. On the other hand for general undirected and directed graphs we show that these problems are NP-complete.

Notes

Acknowledgement

Research of the second, fourth and (in part) the first author is supported by the grant NCN2014/13/B/ST6/00770 of the Polish National Science Center. Research of the first and the third author is supported in part by NSERC Discovery grant.

References

  1. 1.
    Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxès, Y.: Collecting information by power-aware mobile agents. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 46–60. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Albers, S.: Energy-efficient algorithms. Comm. ACM 53(5), 86–96 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Annamalai, V., Gupta, S.K.S., Schwiebert, L.: On tree-based convergecasting in wireless sensor networks. IEEE Wirel. Commun. Netw. 3, 1942–1947 (2003)Google Scholar
  5. 5.
    Augustine, J., Irani, S., Swamy, C.: Optimal powerdown strategies. SIAM J. Comput. 37, 1499–1516 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Averbakh, I., Berman, O.: A heuristic with worst-case analysis for minimax routing of two traveling salesmen on a tree. Discr. Appl. Math. 68, 17–32 (1996)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Azar, Y.: On-line load balancing. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms. LNCS, vol. 1442, pp. 178–195. Springer, Heidelberg (1998). doi:10.1007/BFb0029569 CrossRefGoogle Scholar
  8. 8.
    Baeza-Yates, R.A., Schott, R.: Parallel searching in the plane. Comput. Geom. 5, 143–154 (1995)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-constrained mobile agents on a line. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 423–434. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration by energy-constrained mobile robots. In: Proceedings of SIROCCO, pp. 357–369 (2015)Google Scholar
  11. 11.
    Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree exploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 341–351. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 141–151. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24698-5_18 CrossRefGoogle Scholar
  13. 13.
    Frederickson, G., Hecht, M., Kim, C.: Approximation algorithms for some routing problems. SIAM J. Comput. 7, 178–193 (1978)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Irani, S., Shukla, S.K., Gupta, R.: Algorithms for power savings. ACM Trans. Algorithms 3(4), 41 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kesselman, A., Kowalski, D.R.: Fast distributed algorithm for convergecast in ad hoc geometric radio networks. J. Parallel Distrib. Comput. 66(4), 578–585 (2006)CrossRefMATHGoogle Scholar
  16. 16.
    Krishnamachari, L., Estrin, D., Wicker, S.: The impact of data aggregation in wireless sensor networks. In: ICDCS Workshops, pp. 575–578 (2002)Google Scholar
  17. 17.
    Rajagopalan, R., Varshney, P.K.: Data-aggregation techniques in sensor networks: a survey. Surv. Tutorials Comm. 8(4), 48–63 (2006)CrossRefGoogle Scholar
  18. 18.
    Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced CPU energy. In Proceedings of 36th FOCS, pp. 374–382 (1995)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Jurek Czyzowicz
    • 1
  • Krzysztof Diks
    • 2
  • Jean Moussi
    • 1
  • Wojciech Rytter
    • 2
  1. 1.Département d’informatiqueUniversité du Québec en OutaouaisGatineauCanada
  2. 2.Faculty of Mathematics, Informatics and MechanicsUniversity of WarsawWarsawPoland

Personalised recommendations