Distributed Evacuation in Graphs with Multiple Exits

  • Piotr Borowiecki
  • Shantanu Das
  • Dariusz Dereniowski
  • Łukasz KusznerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9988)


We consider the problem of efficient evacuation using multiple exits. We formulate this problem as a discrete problem on graphs where mobile agents located in distinct nodes of a given graph must quickly reach one of multiple possible exit nodes, while avoiding congestion and bottlenecks. Each node of the graph has the capacity of holding at most one agent at each time step. Thus, the agents must choose their movements strategy based on locations of other agents in the graph, in order to minimize the total time needed for evacuation. We consider two scenarios: (i) the centralized (or offline) setting where the agents have full knowledge of initial positions of other agents, and (ii) the distributed (or online) setting where the agents do not have prior knowledge of the location of other agents but they can communicate locally with nearby agents and they must modify their strategy in an online fashion while they move and obtain more information. In the former case we present an offline polynomial time solution to compute the optimal strategy for evacuation of all agents. In the online case, we present a constant competitive algorithm when agents can communicate at distance two in the graph. We also show that when the agents are heterogeneous and each agent has access to only a subgraph of the original graph then computing the optimal strategy is NP-hard even with full global knowledge. This result holds even if there are only two types of agents.


Discrete evacuation Distributed algorithm Mobile agents Network flow 


  1. 1.
    Alspach, B.: Searching and sweeping graphs: a brief survey. Le Matematiche (Catania) 59, 5–37 (2004)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Berlin, G.: The use of directed routes for assessing escape potential. Fire Technol. 14(2), 126–135 (1978)CrossRefGoogle Scholar
  3. 3.
    Breisch, R.: An intuitive approach to speleotopology. Southwestern Cavers 6, 72–78 (1967)Google Scholar
  4. 4.
    Chalmet, L., Francis, R., Saunders, P.: Network models for building evacuation. Fire Technol. 18(1), 90–113 (1982)CrossRefGoogle Scholar
  5. 5.
    Chrobak, M., Gasieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46078-8_14 Google Scholar
  6. 6.
    Czyzowicz, J., Gasieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45174-8_9 Google Scholar
  7. 7.
    Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication (Extended Abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 140–152. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-18173-8_10 CrossRefGoogle Scholar
  8. 8.
    Edmonds, J., Karp, R.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)CrossRefzbMATHGoogle Scholar
  9. 9.
    Farrugia, A., Gasieniec, L., Kuszner, L., Pacheco, E.: Deterministic rendezvous in restricted graphs. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 189–200. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46078-8_16 Google Scholar
  10. 10.
    Ford, L., Fulkerson, D.: Constructing maximal dynamic flows from static flows. Oper. Res. 6(3), 419–433 (1958)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton (1962)zbMATHGoogle Scholar
  12. 12.
    Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new measure of difficulty for communication tasks. In: PODC 2006, pp. 179–187. ACM (2006)Google Scholar
  13. 13.
    Hamacher, H., Tjandra, S.: Mathematical modelling of evacuation problems - a state of the art. In: Pedestrian and Evacuation Dynamics, pp. 227–266. Springer, Heidelberg (2002)Google Scholar
  14. 14.
    Higashikawa, Y., Golin, M., Katoh, N.: Multiple sink location problems in dynamic path networks. Theor. Comput. Sci. 607, 2–15 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kappmeier, J.P.: Generalizations of flows over time with applications in evacuation optimization. Ph.D. thesis, Technische Universität Berlin (2015)Google Scholar
  16. 16.
    del Moral, A.A., Takimoto, M., Kambayashi, Y.: Distributed evacuation route planning using mobile agents. Trans. Comput. Collective Intell. 17, 128–144 (2014)Google Scholar
  17. 17.
    Tovey, C.: A simplified NP-complete satisfiability problem. Discr. Appl. Math. 8, 85–89 (1984)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Piotr Borowiecki
    • 1
  • Shantanu Das
    • 2
  • Dariusz Dereniowski
    • 1
  • Łukasz Kuszner
    • 1
    Email author
  1. 1.Faculty of Electronics, Telecommunications and InformaticsGdańsk University of TechnologyGdańskPoland
  2. 2.Aix Marseille Univ., CNRS, LIFMarseilleFrance

Personalised recommendations