t-Resilient Immediate Snapshot Is Impossible

  • Carole Delporte
  • Hugues Fauconnier
  • Sergio Rajsbaum
  • Michel Raynal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9988)

Abstract

An immediate snapshot object is a high level communication object, built on top of a read/write distributed system in which all except one processes may crash. It allows each process to write a value and obtains a set of pairs (process id, value) such that, despite process crashes and asynchrony, the sets obtained by the processes satisfy noteworthy inclusion properties.

Considering an n-process model in which up to t processes are allowed to crash (t-crash system model), this paper is on the construction of t-resilient immediate snapshot objects. In the t-crash system model, a process can obtain values from at least \((n-t)\) processes, and, consequently, t-immediate snapshot is assumed to have the properties of the basic \((n-1)\)-resilient immediate snapshot plus the additional property stating that each process obtains values from at least \((n-t)\) processes. The main result of the paper is the following. While there is a (deterministic) \((n-1)\)-resilient algorithm implementing the basic \((n-1)\)-immediate snapshot in an \((n-1)\)-crash read/write system, there is no t-resilient algorithm in a t-crash read/write model when \(t\in [1\ldots (n-2)]\). This means that, when \(t<n-1\), the notion of t-resilience is inoperative when one has to implement t-immediate snapshot for these values of t: the model assumption “at most \(t<n-1\) processes may crash” does not provide us with additional computational power allowing for the design of a genuine t-resilient algorithm (genuine meaning that such an algorithm would work in the t-crash model, but not in the \((t+1)\)-crash model). To show these results, the paper relies on well-known distributed computing agreement problems such as consensus and k-set agreement.

Keywords

Asynchronous system Atomic read/write register Consensus Distributed computability Immediate snapshot Impossibility Iterated model k-Set Agreement Linearizability Process crash failure Snapshot object t-Resilience Wait-freedom 

Notes

Acknowledgments

The authors want to thank the referees for their constructive comments. This work was been partially supported by the French ANR project DISPLEXITY devoted to the study of Computability and Complexity in distributed computing, and the UNAM-PAPIIT project IN107714.

References

  1. 1.
    Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared memory. J. ACM 40(4), 873–890 (1993)CrossRefMATHGoogle Scholar
  2. 2.
    Anderson, J.: Multi-writer composite registers. Distrib. Comput. 7(4), 175–195 (1994)CrossRefGoogle Scholar
  3. 3.
    Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asynchronous environment. J. ACM 37(3), 524–548 (1990)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edn. Wiley-Interscience, New York (2004). 414 pagesCrossRefMATHGoogle Scholar
  5. 5.
    Borowsky E., Gafni E.: Immediate atomic snapshots and fast renaming. In: Proceedings of the 12th ACM Symposium on Principles of Distributed Computing (PODC 1993), pp. 41–50 (1993)Google Scholar
  6. 6.
    Borowsky E. and Gafni E., Generalized FLP impossibility results for \(t\)-resilient asynchronous computations. In: Proceedings of the 25th ACM Symposium on Theory of Computation (STOC 1993), California, USA, pp. 91–100 (1993)Google Scholar
  7. 7.
    Borowsky E., Gafni E.: A simple algorithmically reasoned characterization of wait-free computations. In: Proceedings of the 16th ACM Symposium on Principles of Distributed Computing (PODC 1997), pp. 189–198. ACM Press (1997)Google Scholar
  8. 8.
    Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG distributed simulation algorithm. Distrib. Comput. 14, 127–146 (2001)CrossRefGoogle Scholar
  9. 9.
    Castañeda, A., Rajsbaum, S., Raynal, M.: Specifying concurrent problems: beyond linearizability and up to tasks. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 420–435. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48653-5_28 CrossRefGoogle Scholar
  10. 10.
    Chandra, T., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consensus. J. ACM 43(4), 685–722 (1996)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chaudhuri, S.: More choices allow more faults: set consensus problems in totally asynchronous systems. Inf. Comput. 105(1), 132–158 (1993)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Delporte, C., Fauconnier, H., Rajsbaum, S., Raynal, M.: \(t\)-resilient immediate snapshot is impossible. Technical report 2036, IRISA, Université de Rennes (F): http://hal.inria.fr/hal-01313556
  13. 13.
    Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gafni E., Kuznetsov P., and Manolescu C., A generalized asynchronous computability theorem. In: Proceedings of the 33th ACM Symposium on Principles of Distributed Computing (PODC 1994), pp. 222–231. ACM Press (2014)Google Scholar
  15. 15.
    Gafni, E., Rajsbaum, S.: Recursion in distributed computing. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 362–376. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16023-3_30 CrossRefGoogle Scholar
  16. 16.
    Herlihy, M.P.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1), 124–149 (1991)CrossRefGoogle Scholar
  17. 17.
    Herlihy, M.P., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combinatorial Topology. Morgan Kaufmann/Elsevier, New York (2014). 336 pages. ISBN 9780124045781MATHGoogle Scholar
  18. 18.
    Herlihy, M.P., Luchangco, V., Moir, M.: Obstruction-free synchronization: double-ended queues as an example. In: Proceedings of the 23th International IEEE Conference on Distributed Computing Systems (ICDCS 2003), pp. 522–529. IEEE Press (2003)Google Scholar
  19. 19.
    Herlihy, M., Rajsbaum, S., Raynal, M.: Power and limits of distributed computing shared memory models. Theor. Comput. Sci. 509, 3–24 (2013)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Herlihy, M.P., Shavit, N.: A simple constructive computability theorem for wait-free computation. In: Proceedings of the 26th ACM Symposium on Theory of Computing (STOC 1994), pp. 243–252. ACM Press (1994)Google Scholar
  21. 21.
    Herlihy, M.P., Shavit, N.: The topological structure of asynchronous computability. J. ACM 46(6), 858–923 (1999)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Programm. Lang. Syst. 12(3), 463–492 (1990)CrossRefGoogle Scholar
  23. 23.
    Lamport, L.: On interprocess communication, Part I: basic formalism. Distrib. Comput. 1(2), 77–85 (1986)CrossRefMATHGoogle Scholar
  24. 24.
    Lo, W.-K., Hadzilacos, V.: Using failure detectors to solve consensus in asynchronous shared-memory systems. In: Tel, G., Vitányi, P. (eds.) WDAG 1994. LNCS, vol. 857, pp. 280–295. Springer, Heidelberg (1994). doi:10.1007/BFb0020440 CrossRefGoogle Scholar
  25. 25.
    Loui, M., Abu-Amara, H.: Memory requirements for agreement among unreliable asynchronous processes. Adv. Comput. Res. 4, 163–183 (1987)MathSciNetGoogle Scholar
  26. 26.
    Neiger G., Set-linearizability. In: Brief Announcement in Proceedings of the 13th ACM Symposium on Principles of Distributed Computing (PODC 1994), p. 396. ACM Press (1994)Google Scholar
  27. 27.
    Rajsbaum, S.: Iterated shared memory models. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 407–416. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12200-2_36 CrossRefGoogle Scholar
  28. 28.
    Rajsbaum, S., Raynal, M.: An introductory tutorial to concurrency-related distributed recursion. Bull. Eur. Assoc. TCS 111, 57–75 (2013)MathSciNetGoogle Scholar
  29. 29.
    Rajsbaum, S., Raynal, M., Travers, C.: The iterated restricted immediate snapshot model. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 487–497. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69733-6_48 CrossRefGoogle Scholar
  30. 30.
    Rajsbaum, S., Raynal, M., Travers, C.: An impossibility about failure detectors in the iterated immediate snapshot model. Inf. Process. Lett. 108(3), 160–164 (2008)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Raynal, M.: Concurrent Programming: Algorithms, Principles and Foundations. Springer, Heidelberg (2013). 515 pages. ISBN 978-3-642-32026-2CrossRefMATHGoogle Scholar
  32. 32.
    Raynal, M., Stainer, J.: Increasing the power of the iterated immediate snapshot model with failure detectors. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 231–242. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31104-8_20 CrossRefGoogle Scholar
  33. 33.
    Saks, M., Zaharoglou, F.: Wait-free \(k\)-set agreement is impossible: the topology of public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Taubenfeld, G.: Synchronization Algorithms and Concurrent Programming. Pearson Prentice-Hall, Upper Saddle River (2006). 423 pages. ISBN 0-131-97259-6Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Carole Delporte
    • 1
  • Hugues Fauconnier
    • 1
  • Sergio Rajsbaum
    • 2
  • Michel Raynal
    • 3
  1. 1.IRIF/GANG, Université Paris DiderotParisFrance
  2. 2.Instituto de MatemáticasUNAMMéxico D.F.Mexico
  3. 3.IUF, IRISA (Université de Rennes)RennesFrance

Personalised recommendations