How Many Cooks Spoil the Soup?

  • Othon Michail
  • Paul G. Spirakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9988)


In this work, we study the following basic question: “How much parallelism does a distributed task permit?” Our definition of parallelism (or symmetry) here is not in terms of speed, but in terms of identical roles that processes have at the same time in the execution. We initiate this study in population protocols, a very simple model that not only allows for a straightforward definition of what a role is, but also encloses the challenge of isolating the properties that are due to the protocol from those that are due to the adversary scheduler, who controls the interactions between the processes. We (i) give a partial characterization of the set of predicates on input assignments that can be stably computed with maximum symmetry, i.e., \(\varTheta (N_{min})\), where \(N_{min}\) is the minimum multiplicity of a state in the initial configuration, and (ii) we turn our attention to the remaining predicates and prove a strong impossibility result for the parity predicate: the inherent symmetry of any protocol that stably computes it is upper bounded by a constant that depends on the size of the protocol.


Symmetry Breaking Initial Configuration Production Tree Unique Leader Maximum Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Dimitrios Amaxilatis for setting up and running experiments for the evaluation of the observed symmetry.


  1. [AAD+93]
    Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared memory. J. ACM (JACM) 40(4), 873–890 (1993)CrossRefzbMATHGoogle Scholar
  2. [AAD+06]
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)CrossRefzbMATHGoogle Scholar
  3. [AAER07]
    Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distrib. Comput. 20(4), 279–304 (2007)CrossRefzbMATHGoogle Scholar
  4. [AG15]
    Alistarh, D., Gelashvili, R.: Polylogarithmic-time leader election in population protocols. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 479–491. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47666-6_38 Google Scholar
  5. [Ang80]
    Angluin, D.: Local and global properties in networks of processors. In: Proceedings of the 12th Annual ACM Symposium on Theory of Computing (STOC), pp. 82–93. ACM (1980)Google Scholar
  6. [AR09]
    Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Garbinato, B., Miranda, H., Rodrigues, L. (eds.) Middleware for Network Eccentric and Mobile Applications, pp. 97–120. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. [AW04]
    Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced Topics, vol. 19. Wiley-Interscience, Hoboken (2004)CrossRefzbMATHGoogle Scholar
  8. [CCDS14]
    Chen, H.-L., Cummings, R., Doty, D., Soloveichik, D.: Speed faults in computation by chemical reaction networks. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 16–30. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45174-8_2 Google Scholar
  9. [CDS14]
    Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Nat. Comput. 13(4), 517–534 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [CGK+15]
    Czyzowicz, J., Ga̧sieniec, L., Kosowski, A., Kranakis, E., Spirakis, P.G., Uznański, P.: On convergence and threshold properties of discrete Lotka-Volterra population protocols. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 393–405. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47672-7_32 Google Scholar
  11. [CMN+11]
    Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.: Passively mobile communicating machines that use restricted space. Theoret. Comput. Sci. 412(46), 6469–6483 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [DGFG+11]
    Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kermarrec, A.-M., Ruppert, E., Tran-The, H.: Byzantine agreement with homonyms. In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), pp. 21–30. ACM (2011)Google Scholar
  13. [DH15]
    Doty, D., Hajiaghayi, M.: Leaderless deterministic chemical reaction networks. Nat. Comput. 14(2), 213–223 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [Dot14]
    Doty, D.: Timing in chemical reaction networks. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 772–784 (2014)Google Scholar
  15. [FMS98]
    Flocchini, P., Mans, B., Santoro, N.: Sense of direction: definitions, properties, and classes. Networks 32(3), 165–180 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [FSW14]
    Förster, K.-T., Seidel, J., Wattenhofer, R.: Deterministic leader election in multi-hop beeping networks. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 212–226. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45174-8_15 Google Scholar
  17. [JS85]
    Johnson, R.E., Schneider, F.B.: Symmetry and similarity in distributed systems. In: Proceedings of the 4th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 13–22. ACM (1985)Google Scholar
  18. [KLO10]
    Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC), pp. 513–522. ACM (2010)Google Scholar
  19. [Kra97]
    Kranakis, E.: Symmetry, computability in anonymous networks: a brief survey. In: Proceedings of the 3rd International Conference on Structural Information and Communication Complexity, pp. 1–16 (1997)Google Scholar
  20. [Lyn96]
    Lynch, N.A.: Distributed Algorithms, 1st edn. Morgan Kaufmann, Burlington (1996)zbMATHGoogle Scholar
  21. [MCS11a]
    Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols. Theoret. Comput. Sci. 412(22), 2434–2450 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. [MCS11b]
    Michail, O., Chatzigiannakis, I., Spirakis, P. G.: New models for population protocols. In: Lynch, N.A. (ed.) Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool (2011)Google Scholar
  23. [MRWW01]
    Malkhi, D., Reiter, M.K., Wool, A., Wright, R.N.: Probabilistic quorum systems. Inf. Comput. 170(2), 184–206 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. [MS16]
    Michail, O., Spirakis, P.G.: Simple and efficient local codes for distributed stable network construction. Distrib. Comput. 29(3), 207–237 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. [Pel00]
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied Mathematics, Philadelphia (2000). SIAM monographs on discrete mathematics and applicationsCrossRefzbMATHGoogle Scholar
  26. [Ske82]
    Skeen, D.: A quorum-based commit protocol. Technical report, Cornell University (1982)Google Scholar
  27. [Suo13]
    Suomela, J.: Survey of local algorithms. ACM Comput. Surv. (CSUR) 45(2), 24 (2013)CrossRefzbMATHGoogle Scholar
  28. [YK96]
    Yamashita, M., Kameda, T.: Computing on anonymous networks. I. Characterizing the solvable cases. IEEE Trans. Parallel, Distrib. Syst. 7(1), 69–89 (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  2. 2.Computer Technology Institute and Press “Diophantus” (CTI)PatrasGreece

Personalised recommendations