Lower Semicontinuous Convex Functions

  • Heinz H. Bauschke
  • Patrick L. Combettes
Part of the CMS Books in Mathematics book series (CMSBM)


The theory of convex functions is most powerful in the presence of lower semicontinuity. A key property of lower semicontinuous convex functions is the existence of a continuous affine minorant, which we establish in this chapter by projecting onto the epigraph of the function.


  1. [6]
    R. B. Ash, Real Analysis and Probability, Academic Press, New York, 1972.zbMATHGoogle Scholar
  2. [329]
    S. Simons, Minimax and Monotonicity, vol. 1693 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1998.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Heinz H. Bauschke
    • 1
  • Patrick L. Combettes
    • 2
  1. 1.Department of MathematicsUniversity of British ColumbiaKelownaCanada
  2. 2.Department of MathematicsNorth Carolina State UniversityRaleighUSA

Personalised recommendations