Advertisement

Arbuscular Mycorrhizal Fungi (AMF) for Sustainable Soil and Plant Health in Salt-Affected Soils

  • R. S. YadavEmail author
  • M. K. Mahatma
  • P. P. Thirumalaisamy
  • H. N. Meena
  • D. Bhaduri
  • Sanjay Arora
  • J. Panwar
Chapter

Abstract

Continuous utilization of quality land in civilization and industrialization has gained interest in the utilization of salt-affected soils for crop production. However, crop growth and productivity is severely affected in saline soil. Many strategies were proposed to overcome the salt detrimental effects like development of salt-tolerant cultivars through breeding and/or genetic engineering, removal of excessive salt accumulation in soil, desalinization of irrigation water etc. Though these strategies are efficient but costly. Hence, a cost-effective new alternative attempt has taken up to mitigate soil salinity which involves inoculation of salt-tolerant arbuscular mycorrhizal fungi (AMF) in agricultural crop. Mechanisms of amelioration of salt stress in AMF-plant symbiosis involve enhancing the uptake of less mobile phosphorus, increasing nutrient acquisition, maintaining osmotic balance, enhancing antioxidants and polyamines, altering hormonal status, reducing ion toxicity and enhancing photosynthetic efficiency. AMF colonization induces an increase in root hydraulic conductivity of the host plants under osmotic stress conditions. Furthermore, AMF symbiosis also alters expression of cation channels and transporters, late embryogenesis abundant protein and aquaporins. AMF symbiosis not only changes plant physiology but also changes nutritional and physical properties of the rhizosphere. In the mycorrhizosphere, AMF interact with natural and introduced microorganisms and affect soil properties and quality. The quality of soil largely depends on its physical and chemical properties as well as diversity and activity of soil biota. Thus, AMF have been considered as bio-ameliorators of saline soils.

Keywords

AMF Compatible solutes Nutrient uptake Soil salinity Aquaporin’s 

References

  1. Abeer, H., Abd_Allah, E. F., Alqarawi, A. A., Alwhibimona, S., Alenazi, M. M., Dilfuza, E. A., et al. (2015a). Arbuscular mycorrhizal fungi mitigates NaCl induced adverse effects on Solanum lycopersicum L. Pakistan Journal of Botany, 47(1), 327–340.Google Scholar
  2. Abeer, H., Abd_Allah, E. F., Alqarawi, A. A., & Egamberdieva, D. (2015b). Induction of salt stress tolerance in cowpea [Vigna unguiculata (L.) Walp.] by arbuscular mycorrhizal fungi. Legume Research, 38(5), 579–588.Google Scholar
  3. Al-Garni, S. M. S. (2006). Increasing NaCl-salt tolerance of a halophytic plant Phragmites australis by mycorrhizal symbiosis. American-Eurasian Journal of Agriculture Environment Science, 1, 119–126.Google Scholar
  4. Alguacil, M. M., Hernandez, J. A., Caravaca, F., Portillo, B., & Roldan, A. (2003). Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiologia Plantarum, 118, 562–570.CrossRefGoogle Scholar
  5. Ali, B., Hayat, S., Fariduddin, Q., & Ahmad, A. (2008). 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere, 72, 1387–1392.CrossRefGoogle Scholar
  6. Al-Karaki, G. N. (2000). Growth and mineral acquisition by mycorrhizal tomato grown under salt stress. Mycorrhiza, 10, 51–54.CrossRefGoogle Scholar
  7. Al-Karaki, G. N. (2006). Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulturae, 109, 1–7.CrossRefGoogle Scholar
  8. Al-Karaki, G. N., Hammad, R., & Rusan, M. (2001). Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza, 11, 43–47.CrossRefGoogle Scholar
  9. Al-Khaliel, A. S. (2010). Effect of salinity stress on mycorrhizal association and growth response of peanut infected by Glomus mosseae. Plant, Soil and Environment, 56(7), 318–324.Google Scholar
  10. Andrade, G., Mihara, K. L., Linderman, R. G., & Bethlenfalvay, G. J. (1998). Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant and Soil, 202, 89–96.CrossRefGoogle Scholar
  11. Ansari, R. (1990). Growth and chemical composition of barley (Hordeum vulgare) cultivars on saline substrate as compared with a salt tolerant variety of wheat (Triticum aestivum). In M. L. von Beusichem (Ed.), Plant nutrition physiology and application (pp. 463–467). The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
  12. Aroca, R., Ferrante, A., Vernieri, P., & Chrispeels, M. J. (2006). Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. Annals of Botany, 98, 1301–1310.CrossRefGoogle Scholar
  13. Aroca, R., Porcel, R., & Ruiz-Lozano, J. M. (2007). How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytologist, 173, 808–816.CrossRefGoogle Scholar
  14. Aroca, R., Ruiz-Lozano, J. M., Zamarreno, A. M., Paz, J. A., García-Mina, J. M., Pozo, M. J., et al. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology, 170, 47–55.Google Scholar
  15. Asada, K. (1999). The water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 609–931.CrossRefGoogle Scholar
  16. Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166, 3–16.CrossRefGoogle Scholar
  17. Augé, R. M. (2000). Stomatal behaviour of arbuscular mycorrhizal plants. In Y. Kapulnik & D. D. Douds (Eds.), Arbuscular mycorrhizas: Physiology and functions (pp. 201–237). Drodrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  18. Azcón-Aguilar, C., Azcón, R., & Barea, J. M. (1979). Endomycorrhizal fungi and Rhizobium as biological fertilizers for Medicago sativa in normal cultivation. Nature, 279, 325–327.CrossRefGoogle Scholar
  19. Baker, A., Sprent, J. I., & Wilson, J. (1995). Effects of sodium chloride and mycorrhizal infection on the growth and nitrogen fixation of Prosopis juliflora. Symbiosis, 19, 39–51.Google Scholar
  20. Balliu, A., Glenda, S., & Boris, R. (2015). AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability, 7, 15967–15981.CrossRefGoogle Scholar
  21. Beltrano, J., Ruscitti, M., Arango, M. C., & Ronco, M. (2013). Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. Journal of Soil Science and Plant Nutrition, 13(1), 123–141.Google Scholar
  22. Bethlenfalvay, G. J., Cantrell, I. C., Mihara, K. L., & Schreiner, R. P. (1999). Relationships between soil aggregation and mycorrhizae as influenced by soil biota and nitrogen nutrition. Biology and Fertility of Soils, 28, 356–363.CrossRefGoogle Scholar
  23. Benavides, M. P., Marconi, P. L., Gallego, S. M., Comba, M. E., & Tomaro, M. L. (2000). Relationship between antioxidant defence systems and salt tolerance in Solanum tuberosum. Australian Journal of Plant Physiology, 27, 273–278.Google Scholar
  24. Besford, R. T., Richardson, C. M., Campos, J. L., & Tiburico, A. F. (1993). Effect of polyamines on stabilization of molecular complexes in thyllakoid membranes of osmotically stressed oat leaves. Planta, 189, 201–206.CrossRefGoogle Scholar
  25. Bienert, G. P., Desiree-Bienert, M., Jahn, T. P., Boutry, M., & Chaumont, F. (2011). Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. The Plant Journal, 66, 306–317.CrossRefGoogle Scholar
  26. Blumwald, E., Aharon, G. S., & Apse, M. P. (2000). Sodium transport in plant cells. Biochimica et Biophysica Acta (BBA) Biomembranes, 1465, 140–151.CrossRefGoogle Scholar
  27. Bolarin, M. C., Fernandez, F. G., Cruz, V., & Cuartero, J. (1991). Salinity tolerance in four wild tomato species using vegetative yield salinity response curves. Journal of the American Society for Horticultural Science, 116, 285–290.Google Scholar
  28. Bottrill, D. E., Possingham, J. V., & Kriedemann, P. E. (1970). The effect of nutrient deficiencies on photosynthesis and respiration in spinach. Plant and Soil, 32, 424–438.CrossRefGoogle Scholar
  29. Bowen, G. D., & Rovira, A. D. (1999). The rhizosphere and its management to improve plant growth. Advances in Agronomy, 66, 1–102.CrossRefGoogle Scholar
  30. Bowler, C., Van Montagu, M. V., & Inzé, D. (1992). Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 83–116.CrossRefGoogle Scholar
  31. Bray, E. A. (2002). Abscissic acid regulation of gene expression during water deficit stress in the era of Arabidopsis genome. Plant, Cell and Environment, 25, 153–161.CrossRefGoogle Scholar
  32. Cadenas, E. (1989). Biochemistry of oxygen toxicity. Annual Review of Biochemistry, 58, 79–110.CrossRefGoogle Scholar
  33. Chaumont, F., Barrieu, F., Wojcik, E., Chrispeels, M. J., & Jung, R. (2001). Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiology, 125, 1206–1215.CrossRefGoogle Scholar
  34. Chen, C., & Dickman, M. B. (2005). Proline suppresses apoptosis in the fungal pathogen. Colletotrichum trifolii. Proceedings of the National Academy of Sciences of the United States of America, 102, 3459–3464.CrossRefGoogle Scholar
  35. Cho, K., Toler, H., Lee, J., Ownley, B., Stutz, J. C., & Moore, J. L. (2006). Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. Journal of Plant Physiology, 163, 517–528.CrossRefGoogle Scholar
  36. Colla, G., Rouphael, Y., Cardarelli, M., Tullio, M., Rivera, C. M., & Rea, E. (2008). Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils, 44, 501–509.CrossRefGoogle Scholar
  37. Copeman, R. H., Martin, C. A., & Stutz, J. C. (1996). Tomato growth in response to salinity and mycorrhizal fungi from saline or non saline soil. Horticulture Science, 31, 341–344.Google Scholar
  38. Couee, I., Hummel, I., Sulmon, C., Gowsbet, G., & El Armani, A. (2004). Involvement of polyamines in root development. Plant Cell Tissue and Organ, 76, 1–10.CrossRefGoogle Scholar
  39. Cusido, R. M., Palazon, J., Altobella, T., & Morales, C. (1987). Effect of salinity on soluble protein, free amino acids and nicotine contents in Nicotiana rustica L. Plant and Soil, 102, 55–60.CrossRefGoogle Scholar
  40. Danneberg, G., Latus, C., Zimmer, W., Hundeshagen, B., Schneider-Poetsh, H. G., & Bothe, H. (1992). Influence of vesicular–arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). Journal of Plant Physiology, 141, 33–39.CrossRefGoogle Scholar
  41. Datta, P., & Kulkarni, M. (2014). Arbuscular mycorrhizal colonization enhances biochemical status in and mitigates adverse salt effect on two legumes. Notulae Scientia Biologicae, 6(3), 381–393.CrossRefGoogle Scholar
  42. Delauney, A. J., & Verma, D. P. S. (1993). Proline biosynthesis and osmoregulation in plants. The Plant Journal, 4, 215–223.CrossRefGoogle Scholar
  43. Doran, J. W., & Linn, D. M. (1994). Microbial ecology of conservation management systems. In J. L. Hatfield & B. A. Stewart (Eds.), Soil biology: Effects on soil quality (Advances in soil science, pp. 1–27). Boca Raton, Florida: Lewis.Google Scholar
  44. Duan, X., Neuman, D. S., Reiber, J. M., Green, C. D., Saxton, A. M., & Augé, R. M. (1996). Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. Journal of Experimental Botany, 47, 1541–1550.CrossRefGoogle Scholar
  45. Duke, E. R., Johnson, C. R., & Koch, K. E. (1986). Accumulation of phosphorus, dry matter and betaine during NaCl stress of split-root citrus seedlings colonized with vesicular–arbuscular mycorrhizal fungi on zero, one or two halves. New Phytologist, 104, 583–590.CrossRefGoogle Scholar
  46. Estrada-Luna, A. A., & Davies, F. T. (2003). Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscissic acid and growth of micropropagated Chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. Journal of Plant Physiology, 160, 1073–1083.CrossRefGoogle Scholar
  47. Evelin, H., Kapoor, R., & Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Annals of Botany, 104, 1263–1280.CrossRefGoogle Scholar
  48. Feigin, A., Pressan, E., Imas, P., & Miltau, O. (1991). Combined effects of KNO3 and salinity on yield and chemical composition of lettuce and Chinese cabbage. Irrigation Science, 12, 223–230.CrossRefGoogle Scholar
  49. Feng, G., Zhang, F. S., Xl, L., Tian, C. Y., Tang, C., & Rengel, Z. (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 12, 185–190.CrossRefGoogle Scholar
  50. Flowers, T. J. (2004). Improving crop salt tolerance. Journal of Experimental Botany, 55, 307–319.CrossRefGoogle Scholar
  51. Garg, N., & Manchanda, G. (2008). Effect of arbuscular mycorrhizal inoculation of salt-induced nodule senescence in Cajanus cajan (pigeon pea). Journal of Plant Growth Regulation, 27, 115–124.CrossRefGoogle Scholar
  52. Garg, N., & Manchanda, G. (2009). Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) millsp. (pigeon pea). Journal of Agronomy and Crop Science, 195, 110–123.CrossRefGoogle Scholar
  53. Germ, M., Kreft, I., & Osvald, J. (2005). Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins (Cucurbita pepo L.). Plant Physiology and Biochemistry, 43, 445–448.CrossRefGoogle Scholar
  54. Ghazi, N., & Al-Karaki, G. N. (2006). Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulture, 109, 1–7.CrossRefGoogle Scholar
  55. Ghorbanli, M., Ebrahimzadeh, H., & Sharifi, M. (2004). Effects of NaCl and mycorrhizal fungi on antioxidative enzymes in soybean. Biologia Plantarum, 48, 575–581.CrossRefGoogle Scholar
  56. Ghoulam, C. A., & Foursy, K. F. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47, 39–50.CrossRefGoogle Scholar
  57. Giri, B., Kapoor, R., & Mukerji, K. G. (2003). Influence of arbusculra rmycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biology and Fertility of Soils, 38, 170–175.CrossRefGoogle Scholar
  58. Giri, B., & Mukerji, K. G. (2004). Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: Evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 14, 307–312.CrossRefGoogle Scholar
  59. Giri, B., Kapoor, R., & Mukerji, K. G. (2007). Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecology, 54, 753–760.CrossRefGoogle Scholar
  60. Grattan, S. R., & Grieve, C. M. (1994). Mineral nutrient acquisition and response by plants grown in saline environments. In M. Pessarakli (Ed.), Handbook of Plant and Crop Stress (pp. 203–226). New York, NY: Marcel Dekker.Google Scholar
  61. Grattan, S. R., & Grieve, C. M. (1999). Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78, 127–157.CrossRefGoogle Scholar
  62. Gryndler, M. (2000). Interactions of arbuscular mycorrhizal fungi with other soil organisms. In Y. Kapulnik & D. D. Douds Jr. (Eds.), Arbuscular mycorrhizas: Physiology and function (pp. 239–262). Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
  63. Gulzar, S., Khan, M. A., & Ungar, I. A. (2003). Salt tolerance of a coastal salt marsh grass. Communications in Soil Science Plant Analysis, 34, 2595–2605.CrossRefGoogle Scholar
  64. Günes, A., Inal, A., & Alpaslan, M. (1996). Effect of salinity on stomatal resistance, proline and mineral composition of pepper. Journal of Plant Nutrition, 19, 389–396.CrossRefGoogle Scholar
  65. Gupta, A. B., & Sankararamakrishnan, R. (2009). Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: Characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biology, 9, 134.CrossRefGoogle Scholar
  66. He, Z., He, C., Zhang, Z., Zou, Z., & Wang, H. (2007). Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids and Surfaces B: Biointerfaces, 59(2), 128–133.CrossRefGoogle Scholar
  67. Hill, A. E., Shachar-Hill, B., & Shachar-Hill, Y. (2004). What are aquaporins for? Journal of Membrane Biology, 197, 1–32.CrossRefGoogle Scholar
  68. Hirrel, M. C., & Gerdemann, J. W. (1980). Improved growth of onion and bell peppers in saline soils by two vesicular arbuscular mycorrhizal fungi. Soil Science Society of America Journal, 44, 654–655.CrossRefGoogle Scholar
  69. Hirsch, A. M., & Kapulnik, Y. (1998). Signal transduction pathways in Mycorrhizal associations: Comparisons with the Rhizobium–Legume symbiosis. Fungal Genetics and Biology, 23, 205–212.CrossRefGoogle Scholar
  70. Hodge, A. (2000). Microbial ecology of the arbuscular mycorrhiza. Microbiol Ecology, 32, 91–96.CrossRefGoogle Scholar
  71. Hoekstra, F. A., Golovina, E. A., & Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in Plant Science, 6, 431–438.CrossRefGoogle Scholar
  72. Jahromi, F., Aroca, R., Porcel, R., & Ruiz-Lozano, J. M. (2008). Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbiol Ecology, 55, 45–53.CrossRefGoogle Scholar
  73. Jeffries, P., Gianinazzi, S., Perotto, S., & Turnau, K. (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 37, 1–16.Google Scholar
  74. Jindal, V., Atwal, A., Sekhon, B. S., & Singh, R. (1993). Effect of vesicular-arbuscular rmycorrhizae on metabolism of moong plants under NaCl salinity. Plant Physiology and Biochemistry, 3, 475–481.Google Scholar
  75. Johanson, U., Karlsson, M., Johansson, I., Gustavsson, S., Sjovall, S., Fraysse, L., et al. (2001). The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiology, 126, 1358–1369.Google Scholar
  76. Juniper, S., & Abbott, L. K. (1993). Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza, 4, 45–57.CrossRefGoogle Scholar
  77. Kaplan, B., Sherman, T., & Fromm, H. (2007). Cyclic nucleotide-gated channels in plants. FEBS Letters, 581, 2237–2246.CrossRefGoogle Scholar
  78. Kaya, C., Ashraf, M., Sonmez, O., Aydemir, S., Tuna, A. L., & Cullu, M. A. (2009). The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae, 121, 1–6.CrossRefGoogle Scholar
  79. Kaya, C., Kirnak, H., & Higgs, D. (2001). Enhancement of growth and normal growth parameters by foliar application of potassium and phosphorus in tomato cultivars grown at high (NaCl) salinity. Journal of Plant Nutrition, 24, 357–367.CrossRefGoogle Scholar
  80. Krishnamurthy, R., & Bhagwat, K. A. (1989). Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiology, 91, 500–504.CrossRefGoogle Scholar
  81. Kruse, E., Uehlein, N., & Kaldenhoff, R. (2006). The aquaporins. Genome Biology, 7, 206.CrossRefGoogle Scholar
  82. Kugler, A., Köhler, B., Palme, K., & Wolff, P. (2009). Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biology, 9, 140.CrossRefGoogle Scholar
  83. Kurepa, J., Smalle, J., Montagu, M. V., & Inze, D. (1998). Polyamines and paraquat toxicity in Arabidopsis thaliana. Plant Cell Physiology , 39, 987–992.CrossRefGoogle Scholar
  84. Latef, A. A. H. A., & Chaoxing, H. (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae, 127(3), 228–233.CrossRefGoogle Scholar
  85. Lindermann, R. G. (1994). Role of VAM in biocontrol. In F. L. Pfleger & R. G. Linderman (Eds.), Mycorrhizae and plant health (pp. 1–26). St. Paul: American Phytopathological Society.Google Scholar
  86. Linderman, R. G. (2000). Effects of mycorrhizas on plant tolerance to diseases. In Y. Kapulnik & D. D. Douds Jr. (Eds.), Arbuscular mycorrhizas: Physiology and function (pp. 345–365). Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
  87. Loggini, B., Scartazza, A., Brugnoli, E., & Navari-Izzo, F. (1999). Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiology, 119, 1091–1099.CrossRefGoogle Scholar
  88. Maggio, A., & Joly, R. J. (1995). Effects of mercuric chloride on the hydraulic conductivity of tomato root systems. Plant Physiology, 109, 331–335.CrossRefGoogle Scholar
  89. Marschner, H. (1995). Mineral nutrition of higher plants. London: Academic.Google Scholar
  90. Maas, E. V. (1986). Salt tolerance of plants. Applied Agricultural Research, 1, 12–26.Google Scholar
  91. Maas, E. V., & Hoffman, G. J. (1977). Crop salt tolerance - Current assessment. Journal of Irrigation and Drainage Division of the ASCE, 103(IR2), 115–134.Google Scholar
  92. Maas, E. V., Hoffman, G. J., Chaba, G. D., Poss, J. A., & Shannon, M. C. (1983). Salt sensitivity of corn at various growth stages. Irrigation Science, 4, 45.CrossRefGoogle Scholar
  93. Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany, 51, 659–668.Google Scholar
  94. Meloni, D. A., Oliva, M. A., Ruiz, H. A., & Martinez, C. A. (2001). Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. Journal of Plant Nutrition, 24, 599–612.CrossRefGoogle Scholar
  95. Miller, R. M., & Jastrow, J. D. (2000). Mycorrhizal fungi influence soil structure. In Y. Kapulnik & D. D. Douds Jr. (Eds.), Arbuscular mycorrhizas: Physiology and functions (pp. 3–18). Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
  96. Morgan, J. M. (1984). Osmoregulation and water stress in higher plants. Annual Review of Plant Biology, 33, 299–319.CrossRefGoogle Scholar
  97. Munns, R. (1993). Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant, Cell and Environment, 16, 15–24.CrossRefGoogle Scholar
  98. Munns, R. (2002). Genes and salt tolerance: Bringing them together. New Phytologist, 167, 645–653.CrossRefGoogle Scholar
  99. Munns, R., & Termant, A. (1986). Whole-plant responses to salinity. Australian Journal of Plant Physiology, 13, 143–160.CrossRefGoogle Scholar
  100. Nasim, G., Ali, A., Munawar, A., & Bajwa, R. (2008). Seasonal dynamics of AM fungi in sugarcane (Saccharum officinarum L. cv. SPF-213) in Punjab, Pakistan. Pakistan Journal of Botany, 40(6), 2587–2600.Google Scholar
  101. Nelson, C. E., & Safir, G. R. (1982). Increased drought tolerance of mycorrhizal onion plants caused by improved phosphorus nutrition. Planta, 154, 407–413.CrossRefGoogle Scholar
  102. Núñez, M., Mazzafera, P., Mazorra, L. M., Siqueira, W. J., & Zullo, M. A. T. (2003). Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biologia Plantarum, 47, 67–70.CrossRefGoogle Scholar
  103. Ojala, J. C., Jarrell, M. W., Menge, J. A., & Johnson, E. L. V. (1983). Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agronomics, 75, 225–259.Google Scholar
  104. Ouziad, F., Wilde, P., Schmelzer, E., Hildebrandt, U., & Bothe, H. (2006). Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. Environmental and Experimental Botany, 57, 177–186.CrossRefGoogle Scholar
  105. Pardo, J. M., Cubero, B., Leidi, E. O., & Quintero, F. J. (2006). Alkali cation exchangers: Roles in cellular homeostasis and stress tolerance. Journal of Experimental Botany, 57, 1181–1199.CrossRefGoogle Scholar
  106. Pardossi, A., Bagnoli, G., Malorgio, F., Campiotti, C. A., & Tofnoni, F. (1999). NaCl effects on celery (Apium graveolens L.) grown in NFT. Scientia Horticulturae, 81, 229–242.CrossRefGoogle Scholar
  107. Porcel, R., Barea, J. M., & Ruiz-Lozano, J. M. (2003). Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytologist, 157, 135–143.CrossRefGoogle Scholar
  108. Porcel, R., Aroca, R., Azcón, R., & Ruiz-Lozano, J. M. (2006). PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Molecular Biology, 60, 389–404.CrossRefGoogle Scholar
  109. Porcel, R., Aroca, R., & Ruiz-Lozano, J. M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 32, 181–200.CrossRefGoogle Scholar
  110. Porras-Soriano, A., Soriano-Martín, M. L., Porras-Piedra, A., & Azcón, R. (2009). Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. Journal of Plant Physiology, 166(13), 1350–1359.CrossRefGoogle Scholar
  111. Poss, J. A., Pond, E., Menge, J. A., & Jarrel, W. M. (1985). Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant and Soil, 88, 307–319.CrossRefGoogle Scholar
  112. Pottosin, I., & Shabala, S. (2014). Polyamines control of cation transport across plant membranes: Implications for ion homeostasis and abiotic stress signaling. Frontiers in Plant Science, 5, 1–16.CrossRefGoogle Scholar
  113. Querejeta, J. I., Egerton-Warburton, L. M., & Allen, M. F. (2007). Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California Oak savanna. Soil Biology and Biochemistry, 39, 409–417.CrossRefGoogle Scholar
  114. Rabie, G. H. (2005). Influence of VA-mycorrhizal fungi and kinetin on the response of mung bean plants to irrigation with seawater. Mycorrhiza, 15, 225–230.CrossRefGoogle Scholar
  115. Rabie, G. H., & Almadini, A. M. (2005). Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. African Journal of Biotechnology, 4, 210–222.Google Scholar
  116. Rao, D. L. N. (1998). Biological amelioration of salt-affected soils. In Microbial interactions in agriculture and forestry (Vol. 1, pp. 21–238). Enfield, USA: Science Publishers.Google Scholar
  117. Redondo-Gómez, S., Mateos-Naranjo, E., Figueroa, M. E., & Davy, A. J. (2010). Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum. Plant Biology, 12, 79–87.CrossRefGoogle Scholar
  118. Romero-Aranda, R., Soria, T., & Cuartero, S. (2001). Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Science, 160, 265–272.CrossRefGoogle Scholar
  119. Roy, P., Niyogi, K., Sengupta, D. N., & Ghosh, B. (2005). Spermidine treatment to rice seedlings recovers salinity stress induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt sensitive rice cultivars. Plant Science, 168, 583–591.CrossRefGoogle Scholar
  120. Ruiz-Lozano, J. M., & Azcón, R. (2000). Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza, 10, 137–143.CrossRefGoogle Scholar
  121. Ruiz-Lozano, J. M. (2003). Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress: New perspectives for molecular studies. Mycorrhiza, 13, 309–317.CrossRefGoogle Scholar
  122. Ruiz-Lozano, J. M., Azcón, R., & Gómez, M. (1996). Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiologia Plantarum, 98, 767–772.CrossRefGoogle Scholar
  123. Ruiz-Lozano, J. M., Porcel, R., Azcon, R., & Aroca, R. (2012). Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: New challenges in physiological and molecular studies. Journal of Experimental Botany, 63, 4033–4044.CrossRefGoogle Scholar
  124. Ruiz-Sánchez, M., Aroca, R., Muñoz, Y., Polón, R., & Ruiz-Lozano, J. M. (2010). The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. Journal of Plant Physiology, 167, 862–869.CrossRefGoogle Scholar
  125. Saand, M. A., Xu, Y. P., Munyampundu, J. P., Li, W., Zhang, X. R., & Cai, X. Z. (2015). Phylogeny and evolution of plant cyclic nucleotide-gated ion channel (CNGC) gene family and functional analyses of tomato CNGCs. DNA Research, 22(6), 471–483.CrossRefGoogle Scholar
  126. Sánchez-Blanco, M. J., Ferrández, T., Morales, M. A., Morte, A., & Alarcón, J. J. (2004). Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. Journal of Plant Physiology, 161, 675–682.CrossRefGoogle Scholar
  127. Sannazzaro, A. I., Echeverría, M., Albertó, E. O., Ruiz, O. A., & Menéndez, A. B. (2007). Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiology and Biochemistry, 45(1), 39–46.CrossRefGoogle Scholar
  128. Scandalios, J. G. (1993). Oxygen stress and superoxide dismutases. Plant Physiology, 101, 7–12.CrossRefGoogle Scholar
  129. Selvakumar, G., & Thamizhiniyan, P. (2011). The effect of the arbuscular mycorrhizal (am) fungus glomus intraradices on the growth and yield of Chilli (Capsicum annuum L.) under salinity stress. World Applied Sciences Journal, 14(8), 1209–1214.Google Scholar
  130. Sharifi, M., Ghorbanli, M., & Ebrahimzadeh, H. (2007). Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. Journal of Plant Physiology, 164, 1144–1151.Google Scholar
  131. Sheng, M., Tang, M., Chen, H., Yang, B., Zhang, F., & Huang, Y. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18, 287–296.CrossRefGoogle Scholar
  132. Sheng, M., Tang, M., Chen, H., Yang, B., Zhang, F., & Huang, Y. (2009). Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Canadian Journal of Microbiology, 55(7), 879–886.CrossRefGoogle Scholar
  133. Sheng, M., Tang, M., Zhang, F., & Huang, Y. (2011). Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza, 21, 423–430.CrossRefGoogle Scholar
  134. Silveira, J. A. G., Melo, A. R. B., Viegas, R. A., & Oliveira, J. T. A. (2001). Salinity induced effects on nitrogen assimilation related to growth in cowpea plants. Environmental and Experimental Botany, 46, 171–179.CrossRefGoogle Scholar
  135. Sinclair, G., Charest, C., Dalpé, Y., & Khanizadeh, S. (2014). Influence of colonization by arbuscular mycorrhizal fungi on three strawberry cultivars under salty conditions. Agricultural and Food Science, 23, 146–158.Google Scholar
  136. Singh, R. P., Choudhary, A., Gulati, A., Dahiya, H. C., Jaiwal, P. K., & Sengar, R. S. (1997). Response of plants to salinity in interaction with other abiotic and factors. In P. K. Jaiwal, R. P. Singh, & A. Gulati (Eds.), Strategies for improving salt tolerance in higher plants (pp. 25–39). Enfield, USA: Science Publishers.Google Scholar
  137. Smith, S. E., & Read, D. J. (1997). Mycorrhizal symbiosis (2nd ed.). London: Academic Press.Google Scholar
  138. Smith, F. A., Jakobsen, I., & Smith, S. E. (2000). Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytologist, 147, 357–366.CrossRefGoogle Scholar
  139. Sohan, D., Nasoni, R., & Zajicek, J. (1999). Plant-water relations of NaCl and calcium-treated sunflower plants. Environmental and Experimental Botany, 42, 105–111.CrossRefGoogle Scholar
  140. Talaat, N. B., & Shawky, B. T. (2011). Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. Journal of Plant Nutrition and Soil Science, 174, 283–291.CrossRefGoogle Scholar
  141. Tang, W., Peng, X., & Newton, R. J. (2005). Enhanced salt tolerance in transgenic loblolly pine simultaneously expressing two genes encoding mannitol-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase. Plant Physiology and Biochemistry, 43, 139–146.CrossRefGoogle Scholar
  142. Tian, C. Y., Fengv, G., LiX, L., & Zhang, F. S. (2004). Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Applied Soil Ecology, 26, 143–148.CrossRefGoogle Scholar
  143. Turkan, I., & Demiral, T. (2009). Recent developments in understanding salinity tolerance. Environmental and Experimental Botany, 67, 2–9.CrossRefGoogle Scholar
  144. Venema, K., Belver, A., Marin-Mazena, M. C., Rodriguez-Rosales, M. P., & Donaire, J. P. (2003). A novel intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ homeostasis in plants. Journal of Biological Chemistry, 278, 22453–22459.CrossRefGoogle Scholar
  145. Wang, F. Y., Liu, R. J., Lin, X. G., & Zhou, J. M. (2004). Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza, 14, 133–137.CrossRefGoogle Scholar
  146. Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218, 1–14.CrossRefGoogle Scholar
  147. Wei-Feng, X. U., Wei-Ming, S. H. I., Ueda, A., & Takabe, T. (2008). Mechanisms of salt tolerance in transgenic Arabidopsis thaliana carrying a peroxisomal ascorbate peroxidase gene from barley. Pedosphere, 4, 486–495.Google Scholar
  148. Wright, S. F., & Upadhyaya, A. (1998). A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil, 198, 97–107.CrossRefGoogle Scholar
  149. Wright, S. F., & Upadhyaya, A. (1999). Quantification of arbuscular mycorrhizal fungi activity by the glomalin concentration on hyphal traps. Mycorrhiza, 8, 283–285.CrossRefGoogle Scholar
  150. Wu, Q. S., Zou, Y. N., & Xia, R. X. (2006). Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. European Journal of Soil Biology, 42, 166–172.CrossRefGoogle Scholar
  151. Wu, Y. Y., Chen, Q. J., Chen, M., Chen, J., & Wang, X. C. (2005). Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefasciens-mediated transformation of the vacuolar Naþ/Hþ antiporter gene. Plant Science, 169, 65–73.CrossRefGoogle Scholar
  152. Wu, Q. S., Zou, Y. N., & He, X. H. (2010). Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiologiae Plantarum, 32(2), 297–304.CrossRefGoogle Scholar
  153. Yang, S. J., Zhang, Z. L., Xue, Y. X., Zhang, Z. F., & Shi, S. Y. (2014). Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings. Botanical Studies, 55, 70–77.CrossRefGoogle Scholar
  154. Yano-Melo, A. M., Saggin, O. J., & Maia, L. C. (2003). Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agriculture Ecosystem and Environment, 95, 343–348.CrossRefGoogle Scholar
  155. Zhang, H. X., & Blumwald, E. (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology, 19, 765–768.CrossRefGoogle Scholar
  156. ZhongQun, H., Chao Xing, H., Zhibin, Z., Zhirong, Z., & Huai Song, W. (2007). Changes in antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids and Surfaces B: Biointerfaces, 59, 128–133.CrossRefGoogle Scholar
  157. Zhongqun, H., & Huang, Z. (2013). Expression analysis of LeNHX1 gene in mycorrhizal tomato under salt stress. Journal of Microbiology, 51, 100–104.CrossRefGoogle Scholar
  158. Zhu, J. K. (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6, 441–445.CrossRefGoogle Scholar
  159. Zuccarini, P., & Okurowska, P. (2008). Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. Journal of Plant Nutrition, 31, 497–513.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • R. S. Yadav
    • 1
    Email author
  • M. K. Mahatma
    • 1
  • P. P. Thirumalaisamy
    • 1
  • H. N. Meena
    • 1
  • D. Bhaduri
    • 1
  • Sanjay Arora
    • 2
  • J. Panwar
    • 3
  1. 1.ICAR-Directorate of Groundnut ResearchJunagadhIndia
  2. 2.ICAR-Central Soil Salinity Research Institute, Regional Research StationLucknowIndia
  3. 3.Department of Biological Sciences, Centre for BiotechnologyBirla Institute of Technology and SciencePilaniIndia

Personalised recommendations