The Influence of Low Temperature Clustering on Strengthening Precipitation in Al-Mg-Si Alloys

  • Alex Poznak
  • Paul Sanders


Heat-treatable 6000 series aluminum alloys are the most commonly extruded materials in the world. The precipitation process in these alloys is both complex and well characterized. The earliest clustering stage has been shown to have a large effect on subsequent strengthening precipitation, however little is known about the influence of clustering as a function of composition and processing parameters. The current work examines this influence considering the factors of relative and absolute magnesium and silicon content, and the extent of natural aging. Billets were cast and extruded prior to heat-treatment, and the hardening response was evaluated with hardness, conductivity, and transmission electron microscopy (TEM). This work advances the current understanding of Al-Mg-Si precipitation by correlating the kinetics of age hardening to composition and processing, and may lead to further optimization of 6000 series alloy strength and toughness.


Aluminum 6000 series natural aging artificial aging clustering precipitation strengthening hardening composition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. S. T. C. John Banhart, “Natural Aging in Al-Mg-Si Alloys — A Process of Unexpected Complexity,” Adv. Eng. Mater., vol. 12, no. 7, pp. 559 – 571, 2010.CrossRefGoogle Scholar
  2. [2]
    M. Murayama and K. Hono, “Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys,” Acta Mater., vol. 47, no. 5, pp. 1537–1548, Mar. 1999.CrossRefGoogle Scholar
  3. [3]
    D. J. Chakrabarti and D. E. Laughlin, “Phase relations and precipitation in Al-Mg-Si alloys with Cu additions,” Prog. Mater. Sci., vol. 49, no. s 3–4, pp. 389–410, 2004.CrossRefGoogle Scholar
  4. [4]
    M. A. van Huis, J. H. Chen, M. H. F. Sluiter, and H. W. Zandbergen, “Phase stability and structural features of matrix-embedded hardening precipitates in Al-Mg-Si alloys in the early stages of evolution,” Acta Mater., vol. 55, no. 6, pp. 2183–2199, Apr. 2007.CrossRefGoogle Scholar
  5. [5]
    C. D. Marioara, S. J. Andersen, H. W. Zandbergen, and R. Holmestad, “The influence of alloy composition on precipitates of the Al-Mg-Si system,” Metall. Mater. Trans. A, vol. 36, no. 13, pp. 691–702, Mar. 2005.CrossRefGoogle Scholar
  6. [6]
    K. Matsuda, T. Kawabata, Y. Uetani, T. Sato, A. Kamio, and S. Ikeno, “HRTEM Observation of G.P. Zones and Metastable Phase in Al-Mg-Si Alloys,” Mater. Sci. Forum, vol. 331–337, pp. 989–994, 2000.CrossRefGoogle Scholar
  7. [7]
    M. Murayama, K. Hono, M. Saga, and M. Kikuchi, “Atom probe studies on the early stages of precipitation in Al-Mg-Si alloys,” Mater. Sci. Eng. A, vol. 250, no. 1, pp. 127–132, Jul. 1998.CrossRefGoogle Scholar
  8. [8]
    G. A. Edwards, K. Stiller, G. L. Dunlop, and M. J. Couper, “The precipitation sequence in Al–Mg–Si alloys,” Acta Mater., vol. 46, no. 11, pp. 3893–3904, Jul. 1998.CrossRefGoogle Scholar
  9. [9]
    A. Kelly and R. Nicholson, Precipitation hardening,. Oxford; New York: Pergamon Press, 1963.Google Scholar
  10. [10]
    H. Seyedrezai, D. Grebennikov, P. Mascher, and H. S. Zurob, “Study of the early stages of clustering in Al–Mg–Si alloys using the electrical resistivity measurements,” Mater. Sci. Eng. A, vol. 525, no. 1–2, pp. 186–191, Nov. 2009.CrossRefGoogle Scholar
  11. [11]
    A. Serizawa, S. Hirosawa, and T. Sato, “Three-Dimensional Atom Probe Characterization of Nanoclusters Responsible for Multistep Aging Behavior of an Al-Mg-Si Alloy,” Metall. Mater. Trans. A, vol. 39, no. 2, pp. 243–251, Jan. 2008.CrossRefGoogle Scholar
  12. [12]
    C. S. T. Chang and J. Banhart, “Low-Temperature Differential Scanning Calorimetry of an Al-Mg-Si Alloy,” Metall. Mater. Trans. A, vol. 42, no. 7, pp. 1960–1964, Jan. 2011.CrossRefGoogle Scholar
  13. [13]
    A. Cuniberti, A. Tolley, M. V. C. Riglos, and R. Giovachini, “Influence of natural aging on the precipitation hardening of an AlMgSi alloy,” Mater. Sci. Eng. A, vol. 527, no. 20, pp. 5307–5311, Jul. 2010.CrossRefGoogle Scholar
  14. [14]
    C. D. Marioara, S. J. Andersen, J. Jansen, and H. W. Zandbergen, “The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al–Mg–Si alloy,” Acta Mater., vol. 51, no. 3, pp. 789–796, Feb. 2003.CrossRefGoogle Scholar
  15. [15]
    Y. Birol, “Effect of natural ageing on the performance of pre-ageing to improve bake-hardening response of a twin-roll cast Al–Mg–Si alloy,” Z. Für Met., vol. 96, no. 4, pp. 380–384, Apr. 2005.CrossRefGoogle Scholar
  16. [16]
    J. Røyset, T. Stene, J. A. Sæter, and O. Reiso, “The Effect of Intermediate Storage Temperature and Time on the Age Hardening Response of Al-Mg-Si Alloys,” Mater. Sci. Forum, vol. 519–521, pp. 239–244, 2006.CrossRefGoogle Scholar
  17. [17]
    S. Esmaeili, X. Wang, D. J. Lloyd, and W. J. Poole, “On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111,” Metall. Mater. Trans. A, vol. 34, no. 3, pp. 751–763, Mar. 2003.CrossRefGoogle Scholar
  18. [18]
    H. S. Zurob and H. Seyedrezai, “A model for the growth of solute clusters based on vacancy trapping,” Scr. Mater., vol. 61, no. 2, pp. 141–144, Jul. 2009.CrossRefGoogle Scholar
  19. [19]
    L. A. Girifalco and H. Herman, “A model for the growth of Guinier-Preston zones-the vacancy pump,” Acta Metall., vol. 13, no. 6, pp. 583–590, Jun. 1965.CrossRefGoogle Scholar
  20. [20]
    F. N. Shoichi Hirosawa, “First-Principles Calculation of Interaction Energies between Solutes and/or Vacancies for Predicting Atomistic Behaviors of Microalloying Elements in Aluminum Alloys,” Mater. Sci. Forum — MATER SCI FORUM, pp. 283–286, 2007.Google Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2016

Authors and Affiliations

  • Alex Poznak
    • 1
  • Paul Sanders
    • 1
  1. 1.Michigan Technological UniversityHoughtonUSA

Personalised recommendations