Microstructural and Mechanical Investigations of Friction Stir Welded TI/TI- And TI-Alloy/TI-Alloy-Joints

  • N. Buhl
  • G. Wagner
  • D. Eifler
  • M. Gutensohn
  • F. Zillekens


Friction Stir Welding (FSW) is an efficient welding technique to join light-weight materials in ductile material condition. Especially for aerospace applications FSW of cp-titanium and Ti-alloys is of high scientific and technological interest. At the Institute of Materials Science and Engineering (WKK) friction stir welds of 1.2 mm thick cp-titanium and Ti6A14V sheets were produced. To analyze the microstructure of the welding zone in detail light- and scanning electron-microscopic investigations were carried out. By EBSD it was possible to describe the material flow in the welding zone. The mechanical properties were characterized by two dimensional micro-hardness measurements and strain controlled tensile tests. For welds with cp-titanium a yield point of 345 MPa and an ultimate tensile strength of 450 MPa were achieved.


FSW of cp-Titanium and Ti6Al4V Microstructure Texture Mechanical Properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boyer, R., G. Welsch, and E. W. Collings, Materials Properties Handbook: Titanium Alloys 1998, Materials Park, OH 44073–0002: ASM International.Google Scholar
  2. 2.
    Zhang, Y., et al., Grain structure and microtexture in friction stir welded commercial purity titanium. Science and Technology of Welding & Joining, 2010. 15(6): p. 500–505.CrossRefGoogle Scholar
  3. 3.
    Fujii, H., et al., Investigation of welding parameter dependent microstructure and mechanical properties in friction stir welded pure Ti joints. Materials Science and Engineering: A, 2010. 527(15): p. 3386–3391.CrossRefGoogle Scholar
  4. 4.
    Mishra, R. S. and Z. Y. Ma, Friction stir welding and processing. Materials Science and Engineering: R: Reports, 2005. 50(1–2): p. 1–78.CrossRefGoogle Scholar
  5. 5.
    Jata, K. V. and A. P. Reynolds, Microstructure And Mechanical Behavior Of Friction Stir Welded Titanium Alloys. Metallic Materials With High Structural Effiency, 2004: p. 10.Google Scholar
  6. 6.
    Edwards, P. and M. Ramulu, Identification of Process Parameters for Friction Stir Welding Ti-6Al-4V. Journal of Engineering Materials and Technology, 2010. 132(3): p. 031006–10.CrossRefGoogle Scholar
  7. 7.
    Buhl, N., et al., Friction Stir Welding of Ti/Ti- and Ti-Alloy/Ti-Alloy-Joints. 9th International Symposium on Friction Stir Welding, USA, 2012.Google Scholar
  8. 8.
    Lütjering, G. and J. C. Williams, Titanium 2001, Berlin: Springer.Google Scholar
  9. 9.
    Peters, M. and C. Leyens, Titan und Titanlegierungen 2002, Weinheim: WILEY-VCH.CrossRefGoogle Scholar
  10. 10.
    Singh, A. K. and R. A. Schwarzer, Texture and Anisotropy of Mechanical Properties in Titanium and Its Alloys. Zeitschrift für Metallkunde, 2000. 91: p. 15.Google Scholar
  11. 11.
    Mironov, S., Y. S. Sato, and H. Kokawa, Development of grain structure during friction stir welding of pure titanium. Acta Materialia, 2009. 57(15): p. 4519–4528.CrossRefGoogle Scholar
  12. 12.
    Zhang, Y., et al, Micro structural characteristics and mechanical properties of Ti-6Al-4V friction stir welds. Materials Science and Engineering: A, 2008. 485(1–2): p. 448–455.CrossRefGoogle Scholar
  13. 13.
    Ramirez, A. J. and M. C. Juhas, Microstructural Evolution In Ti-6Al-4V Friction Stir Welds. Materials Science Forum, 2003. 426–432: p. 2999.Google Scholar
  14. 14.
    Edwards, P. and M. Ramulu, Peak temperatures during friction stir welding of Ti6Al4V. Science and Technology of Welding and Joining, 2010. 15: p. 468–472.CrossRefGoogle Scholar
  15. 15.
    Zhou, L., et al., The stir zone microstructure and its formation mechanism in Ti-6Al-4V friction stir welds. Scripta Materialia, 2009. 61(6): p. 596–599.CrossRefGoogle Scholar
  16. 16.
    Pilchak, A., et al., Microstructure Evolution during Friction Stir Welding of Mill-Annealed Ti-6Al-4V. Metallurgical and Materials Transactions A, 2011. 42(3): p. 745–762.CrossRefGoogle Scholar
  17. 17.
    Ahmed, M. M. Z., et al., Through-thickness crystallographic texture of stationary shoulder friction stir welded aluminium. Scripta Materialia, 2011. 64(1): p. 45–48.CrossRefGoogle Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2013

Authors and Affiliations

  • N. Buhl
    • 1
  • G. Wagner
    • 1
  • D. Eifler
    • 1
  • M. Gutensohn
    • 2
  • F. Zillekens
    • 2
  1. 1.Institute of Materials Science and Engineering (WKK)University of KaiserslauternKaiserslauternGermany
  2. 2.PFW Aerospace AGSpeyerGermany

Personalised recommendations