Advertisement

Multi Scale Characterization of SiC/SiC Composite Materials

  • D. Frazer
  • M. D. Abad
  • C. Back
  • C. Deck
  • P. Hosemann
Chapter

Abstract

SiC fiber-reinforced SiC matrix composites (SiC/SiC) are under consideration as a structural material for a range of nuclear applications. While these materials have been studied for decades, recently new small scale materials testing techniques have emerged which can be used to characterize SiC/SiC materials from a new perspective. In this work cross section nanoindentation was performed on SiC/SiC composites revealing that both the hardness and Young’s modulus was substantially lower in the fiber compared to the matrix despite both being SiC. Using a Scanning Electron Microscopy (SEM) it was observed that the grain growth of the matrix during formation was radially out from the fiber with a changing grain structure as a function of radius from the fiber center. Focused ion beam machining was used to manufacture micro-cantilever samples and evaluate the fracture toughness and fracture strength in the matrix as a function of grain orientation in the matrix.

Keywords

SiC SiC fibers reinforced SiC matrix nanoindentation FIB Micro cantilevers testing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    The stationary office “our energy future- creating a low carbon economy” Energy White Paper, UK, (2003).Google Scholar
  2. [2]
    Report of National Energy Policy Development Group “Reliable, Affordable and Environmentally Sound Energy for American’s Future” National Energy Strategy, US/DOE, May (2001).Google Scholar
  3. [3]
    S. Kubo, H. Nakajima, S. Kasahara, S. Higashi, T. Masaki, H. Abe, K. Onuki. “A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process.” Nucl. Eng. Des. 233 (2004)Google Scholar
  4. [4]
    N. Woudstra,, T. Woudstra, A. Pirone, T. Stelt “Thermodynamic evaluation of combined cycle plants” Ener. Con. Manag. 51Google Scholar
  5. [5]
    A.M. Bassily “Modeling, numerical optimization, and irreversibility reduction of a triple-pressure reheat combined cycle” Ener. 32 (2007)Google Scholar
  6. [6]
    Y. Katoh, D.F. Wilson, C.W. Forsberg (contributors) Lance L. Snead, David F. Williams, “Assessment of Silicon Carbide Composites for Advanced Salt-Cooled Reactors” ONRL/TM-2007/168, (2007)CrossRefGoogle Scholar
  7. [7]
    C.P. Deck, H.E. Khalifa, B. Sammuli, T. Hilsabeck, CA. Back, “Fabrication of SiC-SiC composites for fuel cladding in advanced reactor designs”, Progress in Nuclear Energy, v.57 pp.38–45(2012)CrossRefGoogle Scholar
  8. [8]
    R.J. Price, G.R. Hopkins, “Flexural Strength of Proof-Tested and Neutron-Irradiated Silicon Carbide,” J. Nucl. Mater. 732 (1982)Google Scholar
  9. [9]
    Naslain R. : Bunk WGJ, editor. “Thermo structural ceramic matrix composites: an overview, advanced structural and functional materials”. Berlin: Springer±Verlag, (1991)Google Scholar
  10. [10]
    R. J. Price, “Properties of silicon carbide for nuclear fuel particle coatings” Nuc. Technol. 35 (1977)Google Scholar
  11. [11]
    Marshall DB, Evans AG. “Failure mechanisms in ceramic-Fiber/ceramic-matrix composites” J. Am. Ceram. Soc. (1985)Google Scholar
  12. [12]
    S. Zhu, M. Mizuno, Y. Kagawa, Y. Mutoh, “Monotonic tension, Fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: a review” Comp. Sci. and Tech. 59 (1999)Google Scholar
  13. [13]
    A. Kohyama, “Advanced SiC/SiC Composite Materials for Fourth Generation Gas Cooled Fast Reactor*,” Key Eng. Mater. (2005)Google Scholar
  14. [14]
    S. Nogami, N. Otake, A. Hasegawa, Y. Katoh, A. Yoshikawa, M. Satou, Y. Oya, K. Pkuno, “Oxidation behavior of SiC/SiC composites for helium cooled solid breeder blanket” Fus. Eng. And Des. 83 (2008)Google Scholar
  15. [15]
    B.A. Pint, J.L. Moser, P.F. Tortorelli “Investigation of Pb-Li compatibility issues for dual coolant blanket concept” J. Nucl. Mater. 367–370 (2007)Google Scholar
  16. [16]
    T. Nozawa, T. Hinoki, A. Hasegawa, A. Kohyama, Y. Katoh, L.L. Snead, C.H. Henager Jr., J.B.J. Hegeman, “ Recent advances and issues in development of silicon carbide composites for fusion applications,” J. Nuc. Mater. 622–627 (2009)Google Scholar
  17. [17]
    Evans AG. “Perspective on the development of high-toughness ceramics” J. Am. Ceram. Soc. 1990.Google Scholar
  18. [18]
    M. Ferraris, V. Casalegno, S. Rizzo, M. Salvo, T.O. Van Staveren, J. Matejicek “Effects of neutron irradiation on glass ceramics as pressure-les joining materials for SiC based components for Nuclear Applications” Jour. Nuc. Mat. 429 (2012)Google Scholar
  19. [19]
    T. Hinoki, E. Lara-curzio and L. Snead, “Mechanical Properties of High Purity SiC Fiber-Reinforced CVI-SiC Matrix Composites,” Fus. Sci. and Tech., 44 (2003)Google Scholar
  20. [20]
    L.L. Snead, R.H. Jones, A. Kohyama, P. Fenici “Status of silicon carbide composites for fusion,” J. Nucl. Mater., 26 (1996)Google Scholar
  21. [21]
    Effmger, M.R. & Genge, G.G. & Kiser, J.D., “Ceramic composite turbine disks for rocket engines”, Adv. Mater. Process. 157, 2000Google Scholar
  22. [22]
    T. Noda, M. Fujita, H. Araki and A. Kohyama “Impurities and Evaluation of Induced Activity of CVI SiCf/SiC composites,” Fus. Eng. and Des., 51–52, 99 (2000)Google Scholar
  23. [23]
    T. Ishikawa “Advances in Inorganic Fibers,” Adv. Polym. Sci. (2005)Google Scholar
  24. [24]
    W.C. Oliver and G. M. Pharr “An improved technique for determining hardness andelastic modulus using load and displacement sensing indentation experiments” J. Mater. Res., 7 (1992)Google Scholar
  25. [25]
    D. Di Maio, S.G. Roberts, “Measuring fracture toughness of coating suing focused-ion-beam-machined microbeams” J. Mater. Res., Vol. 20, (2005)Google Scholar
  26. [26]
    P. Hosemann, J. N. Martos, D. Frazer, G. Vasudevamurthy, T. S. Byun, J. D. Hunn, B. C. Jolly, K. Terrani, M. Okuniewski, “Mechanical characteristics of SiC coating layer in TRISO fuel particles” Journ. Of Nuc. Mat. 442 (2013)Google Scholar
  27. [27]
    T. S. Perova, R. A. Moore, K. Berreth, K. Maile, A. Lyutovich. “MicroRaman spectroscopy of protective coatings deposited onto C/C-SiC composites” Mat. Sci & Technol 23 (11)(2007)1300–1304CrossRefGoogle Scholar
  28. [28]
    Ph. Colomban, G. Gouadec, L. Mazerolles. “Raman analysis of materials … the example of SiC fibers” Mater. Corros. 53 (2002) 306–315CrossRefGoogle Scholar
  29. [29]
    A.B. Mann, M. Balooch, J.H. Kinney, and T.P. Weihs. “Radial variations in modulus and hardness in SCS-6 silicon carbide fibers” J. Am. Ceram. Soc, 82 (1) 111–116 (1999)CrossRefGoogle Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2014

Authors and Affiliations

  • D. Frazer
    • 1
  • M. D. Abad
    • 1
  • C. Back
    • 2
  • C. Deck
    • 2
  • P. Hosemann
    • 1
  1. 1.University of California BerkeleyBerkeleyUSA
  2. 2.General AtomicsSan DiegoUSA

Personalised recommendations