Fractal Plasmonic Nanoantennae

Chapter
Part of the Reviews in Plasmonics book series (RIP, volume 2016)

Abstract

The ability to precisely tailor lineshapes, operational bandwidth and localized electromagnetic field enhancements (“hot spots”) in nanostructures is currently of interest in advancing the performance of plasmonics based chemical and biological sensing techniques as well as in plasmonics based energy harvesting applications. Fractal geometries are an intriguing alternative in the design of plasmonic nanostructures as they offer tunable multi-band response spanning the visible and infrared spectral regions. This chapter reviews the recent developments concerning the incorporation of fractal geometries into plasmonic nanostructures. The scope is restricted to the review of fractal shaped antenna elements as opposed to fractal based array placement methods. Beginning with a brief overview of fractals and fractal based radio-frequency antenna engineering, the review focuses on two canonical geometries: the Sierpinski carpet and the fractal tree. Fractal geometries are promising for improving the performance of plasmonics based optical applications like ultrasensing and energy harvesting.

Keywords

Fractals Nanoantenna Surface-enhanced spectroscopy Nanostructures 

References

  1. 1.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York. doi: 10.1007/0-387-37825-1Google Scholar
  2. 2.
    Ciraci C, Hill RT, Mock JJ, Urzhumov Y, Fernandez-Dominguez AI, Maier SA, Pendry JB, Chilkoti A, Smith DR (2012) Science 337(6098):1072. doi:10.1126/science.1224823CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Nat Mater 7(6):442. doi: 10.1038/nmat2162CrossRefPubMedGoogle Scholar
  4. 4.
    Stockman MI (2006) Electromagnetic theory of SERS. Top Appl Phys. 103:47. Springer. doi: 10.1007/11663898∖_3Google Scholar
  5. 5.
    Jackson JB, Halas NJ (2004) Proc Natl Acad Sci U S A 101(52):17930. doi: 10.1073/pnas.0408319102CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kundu J, Le F, Nordlander P, Halas NJ (2008) Chem Phys Lett 452(1–3):115. doi: 10.1016/j.cplett.2007.12.042CrossRefGoogle Scholar
  7. 7.
    Scalora M, Vincenti Ma, de Ceglia D, Roppo V, Centini M, Akozbek N, Bloemer MJ (2010) Phys Rev A 82:33. doi: 10.1103/PhysRevA.82.043828Google Scholar
  8. 8.
    Fischer H, Martin OJF (2008) Opt Express 16(12):9144. doi: 10.1364/ OE.16.009144CrossRefPubMedGoogle Scholar
  9. 9.
    Gallinet B, Martin OJF (2011) ACS Nano 5(11):8999. doi: 10.1021/ nn203173rCrossRefPubMedGoogle Scholar
  10. 10.
    Becker J, Trügler A, Jakab A, Hohenester U, Sönnichsen C (2010) Plasmonics 5(2):161. doi: 10.1007/s11468-010-9130-2CrossRefGoogle Scholar
  11. 11.
    Hegde RS, Mesch M, Giessen H (2014) In: Proceedings of META’14, the 5th international conference on metamaterials, photonic crystals and plasmonics, SingaporeGoogle Scholar
  12. 12.
    Liu S, Sinclair MB, Mahony TS, Jun CY, Campione S, Ginn J, Bender DA, Wendt JR, Ihlefeld JF, Clem PG, Wright JB, Brener I (2014) Optical magnetic mirrors without metals. Optica 1:250–256CrossRefGoogle Scholar
  13. 13.
    Gottheim S, Zhang H, Govorov AO, Halas NJ (2015) ACS Nano 9(3):3284. doi: 10.1021/acsnano.5b00412, http://pubs.acs.org/doi/abs/10.1021/acsnano.5b00412 CrossRefPubMedGoogle Scholar
  14. 14.
    Luk’yanchuk B, Zheludev NI, Maier Sa, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) Nat Mater 9(9):707. doi: 10.1038/nmat2810, http://www.ncbi.nlm.nih.gov/pubmed/20733610
  15. 15.
    Brolo AG, Gordon R, Leathem B, Kavanagh KL, Langmuir (2004) 20(12):4813. doi: 10.1021/la0493621CrossRefPubMedGoogle Scholar
  16. 16.
    Gallinet B (2012) Fano resonances in plasmonic nanostructures: fundamentals, numerical modeling and applications. Ph. D. thesis, EPFL. doi:  10.5075/epfl-thesis-5299 Google Scholar
  17. 17.
    Cohen N (2015) In: Frame M, Cohen N (eds) Benoit Mandelbrot: a life in many dimensions, chap 8, World Scientific Publishing Company, Singapore, pp 207–229Google Scholar
  18. 18.
    Fowler AD (1991) The fractal geometry of nature (revised edition), W.H. Freeman and Company, San Francisco, vol. 17. doi: 10.1016/0098-3004(91)90106-N, http://www.sciencedirect.com/science/article/pii/009830049190106N
  19. 19.
    Werner DH, Haupt RL, Werner PL (1999) IEEE Antennas Propag Mag 41(5):37. doi: 10.1109/74.801513CrossRefGoogle Scholar
  20. 20.
    Werner DH, Ganguly S (2003) IEEE Antennas Propag Mag 45(1):38. doi: 10.1109/MAP.2003.1189650CrossRefGoogle Scholar
  21. 21.
    Shalaev VM, Moskovits M, Golubentsev Aa, John S (1992) Phys A Stat Mech Appl 191(1–4):352. doi: 10.1016/0378-4371(92)90551-ZGoogle Scholar
  22. 22.
    Sederberg S, Elezzabi AY (2011) Appl Phys Lett 98(26):1. doi: 10.1063/ 1.3605570CrossRefGoogle Scholar
  23. 23.
    Falconer KJ (1990) Fractal geometry: mathematical foundations and applications. John Wiley and Sons, New York doi: 10.2307/2532125, http://books.google.ca/books/about/Fractal_geometry.html?id=_WrvAAAAMAAJ&pgis=1
  24. 24.
    Hohlfeld RG, Cohen N (1999) Fractals 7(Compendex), 79 doi: 10.1142/S0218348X99000098 http://dx.doi.org/10.1142/S0218348X99000098
  25. 25.
    Hohlfeld RG, Cohen N (2003) IEEE International Symposium on Phased Array Systems and Technology 2003-January, 588 doi:10.1109/PAST.2003.1257047Google Scholar
  26. 26.
    Gonz??lez FJ, Boreman GD (2005) Infrared Phys Technol 46(5):418. doi: 10.1016/j.infrared.2004.09.002Google Scholar
  27. 27.
    Hsu KH, Back JH, Fung KH, Ferreira PM, Shim M, Fang NX (2010) J Raman Spectrosc 41(10):1124. doi: 10.1002/jrs.2581CrossRefGoogle Scholar
  28. 28.
    Volpe G, Volpe G, Quidant R (2011) Opt Express 19(4):3612. doi: 10.1364/OE.19.003612CrossRefPubMedGoogle Scholar
  29. 29.
    Rosa L, Sun K, Juodkazis S (2011) Phys Stat Solidi Rapid Res Lett 5(5–6):175. doi: 10.1002/pssr.201105136CrossRefGoogle Scholar
  30. 30.
    Sederberg S, Elezzabi aY (2011) Opt Express 19(11):10456. doi: 10.1364/ OE.19.010456Google Scholar
  31. 31.
    Chen TL, Dikken DJ, Prangsma JC, Segerink F, Herek JL (2014) N J Phys 16(9):093024. doi: 10.1088/1367-2630/16/9/093024 http://stacks.iop.org/1367-2630/16/i=9/a=093024?key=crossref.eb87b5b053d2a20a3b13c027c3153f1d CrossRefGoogle Scholar
  32. 32.
    Cakmakyapan S, Cinel Na, Cakmak AO, Ozbay E (2014) Opt Express 22(16):19504. doi: 10.1364/OE.22.019504 http://www.osapublishing.org/viewmedia.cfm?uri=oe-22-16-19504&seq=0&html=true Google Scholar
  33. 33.
    Abdellatif S, Kirah K (2013) Opt Lett 38(18):3680. doi: 10.1364/OL.38.003680 http://ol.osa.org/abstract.cfm?URI=ol-38-18-3680 CrossRefPubMedGoogle Scholar
  34. 34.
    Zhu LH, Shao MR, Peng RW, Fan RH, Huang XR, Wang M (2013) Opt Express 21 Suppl 3(May), A313 doi: 10.1364/OE.21.00A313, http://www.ncbi.nlm.nih.gov/pubmed/24104419
  35. 35.
    Kazerooni H, Khavasi A (2014) Opt Quantum Electron 46(6):751. doi: 10.1007/s11082-013-9783-0CrossRefGoogle Scholar
  36. 36.
    Eshaghian A, AbdollahRamezani S, Chizari A, Mehrany K (2016) pp 1–16 http://arxiv.org/abs/1605.07208
  37. 37.
    Huang X, Xiao S, Ye D, Huangfu J, Wang Z, Ran L, Zhou L (2010) Opt Express 18(10):10377. doi: 10.1364/OE.18.010377, http://www.osapublishing.org/viewmedia.cfm?uri=oe-18-10-10377&seq=0&html=true CrossRefPubMedGoogle Scholar
  38. 38.
    Li G, Chen X, Ni B, Li O, Huang L, Jiang Y, Hu W, Lu W (2013) Nanotechnology 24(20):205702. doi: 10.1088/0957-4484/24/20/205702 http://www.ncbi.nlm.nih.gov/pubmed/23598737 CrossRefPubMedGoogle Scholar
  39. 39.
    Hegde RS, Khoo EH (2015) Plasmonics doi: 10.1007/s11468-015-0059-3, http://dx.doi.org/10.1007/s11468-015-0059-3
  40. 40.
    Nagatani T (1989) Phys Rev A 39(1):438CrossRefGoogle Scholar
  41. 41.
    Kuttge M, García De Abajo FJ, Polman A (2010) Nano Lett 10(5):1537. doi: 10.1021/nl902546rGoogle Scholar
  42. 42.
    Willingham B, Brandl DW, Nordlander P (2008) Appl Phys B Lasers Opt 93(1):209. doi: 10.1007/s00340-008-3157-5CrossRefGoogle Scholar
  43. 43.
    Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Nano Lett 9(4):1651. doi: 10.1021/nl900034vCrossRefPubMedGoogle Scholar
  44. 44.
    Knight MW, Wu Y, Lassiter JB, Nordlander P, Halas NJ (2009) Nano Lett 9(5):2188. doi: 10.1021/nl900945qCrossRefPubMedGoogle Scholar
  45. 45.
    Powell DA, Kivshar YS (2010) Appl Phys Lett 97(9):1. doi: 10.1063/1. 3486480CrossRefGoogle Scholar
  46. 46.
    Zhang J, Ou JY, Papasimakis N, Chen Y, MacDonald KF, Zheludev NI (2011) Opt Express 19(23):23279. doi: 10.1364/OE.19.023279CrossRefPubMedGoogle Scholar
  47. 47.
    Cui Y, Phang IY, Hegde RS, Lee YH, Ling XY (2014) ACS Photonics 1(7):631. doi: 10.1021/ph5001154, http://pubs.acs.org/doi/abs/10.1021/ph5001154 CrossRefGoogle Scholar
  48. 48.
    Cui Y, Hegde RS, Phang IY, Lee HK, Ling XY (2014) Nanoscale 6(1):282. doi: 10.1039/c3nr04375d.PleaseCrossRefPubMedGoogle Scholar
  49. 49.
    Maier Sa (2006) Optics Express 14(5):1957. doi: 10.1364/OE.14.001957Google Scholar
  50. 50.
    Pavlov RS, Curto AG, Van Hulst (2012) NF Opt Commun 285(16):3334. doi: 10.1016/j.optcom.2012.04.010Google Scholar
  51. 51.
    Solís DM, Taboada JM, Araújo MG, Obelleiro F, Rubiños López JO (2013) Opt Commun (July 2015) 61:301–302. doi: 10.1016/j.optcom. 2013.03.047Google Scholar
  52. 52.
    Pavlov RS, Curto AG, Van Hulst (2012) NF Opt Commun 285(16):3334. doi: 10.1016/j.optcom.2012.04.010Google Scholar
  53. 53.
    Yang J, Kong F, Li K, Sheng S (2015) Opt Commun 342:230. doi: 10.1016/j.optcom.2014.12.075, http://dx.doi.org/10.1016/j.optcom.2014.12.075 CrossRefGoogle Scholar
  54. 54.
    Aouani H, Rahmani M, Šípová H, Torres V, Hegnerová K, Beruete M, Homola J, Hong M, Navarro-Cía M, Maier Sa (2013) J Phys Chem C 117(36): 18620. doi: 10.1021/jp404535xGoogle Scholar
  55. 55.
    Grigorenko I (2013) Appl Phys Letters 103(4):2014. doi: 10.1063/1. 4816726CrossRefGoogle Scholar
  56. 56.
    Afshinmanesh F, Curto AG, Milaninia KM, Van Hulst NF, Brongersma ML (2014) Nano Lett 14(9):5068. doi:10.1021/nl501738bCrossRefPubMedGoogle Scholar
  57. 57.
    Puente C, Claret J, Sagues F, Romeu J, Lopez-Salvans MQ, Pous R (1996) Electron Lett 32(25):2298. doi: 10.1049/el:19961579CrossRefGoogle Scholar
  58. 58.
    Luchowski R, Shtoyko T, Matveeva E, Sarkar P, Borejdo J, Gryczynski Z, Gryczynski I (2010) Appl Spectrosc 64(6):578. doi: 10.1366/ 000370210791414317CrossRefPubMedGoogle Scholar
  59. 59.
    Dong J, Qu S, Zheng H, Zhang Z, Li J, Huo Y Li G (2014) Sens Actuators B: Chem 191:595. doi: 10.1016/j.snb.2013.09.088CrossRefGoogle Scholar
  60. 60.
    Stockman MI, Shalaev VM, Moskovits M, Botet R, George TF (1992) Phys Rev B 46(82):2821CrossRefGoogle Scholar
  61. 61.
    Agrawal A, Matsui T, Zhu W, Nahata A, Vardeny ZV (2009) Phys Rev Lett 102:113901CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Indian Institute of Technology GandhinagarPalaj, GandhinagarIndia

Personalised recommendations