Acupuncture Analgesia: A Review of Peripheral and Central Mechanisms

Chapter

Abstract

Acupuncture is an ancient needling modality within Traditional Chinese Medicine used for chronic pain management. Western biophysical and Chinese meridian theory views of pain differ, and so do their respective management practices. The reversible effect of naloxone on the acupuncture induced analgesia is well known. Research has also shown correlations between acupuncture and its effect on the peripheral nerve endings, connective tissue, neurotransmitters, and inflammatory mediators. Centrally, studies with functional imaging and dynamic quantitative sensory testing substantiate the modulatory role of acupuncture in the “wind-up” phenomenon of spinal wide dynamic range neurons and different brain areas related to pain perception and modulation. Despite this increased understanding in the mechanisms and the analgesic efficacy of acupuncture, controversy continues to evolve around the issues of placebo effect and its potential therapeutic role in the main stream medicine.

Keywords

Acupuncture Pain Acupuncture mechanism Traditional Chinese medicine Acupuncture analgesia Supraspinal pain modulation Peripheral pain modulation 

References

  1. 1.
    Relieving Pain in America, A Blueprint for Transforming Prevention, Care, Education and Research. Institute of Medicine Report from the Committee on Advancing Pain Research, Care, and Education, 2011.Google Scholar
  2. 2.
    Prevention CfDCa. Injury Prevention & Control: Prescription Drug Overdose—What the Public Needs to Know about the Epidemic 2015 [updated May 5, 2015]. Available from: http://www.cdc.gov/drugoverdose/epidemic/public.html.
  3. 3.
    Prevention CfDCa. Injury Prevention & Control: Prescription Drug Overdose—Understanding the Epidemic 2015 [April 30, 2015]. Available from: http://www.cdc.gov/drugoverdose/epidemic/index.html.
  4. 4.
    Sita Ananth M. Complementary alternative medicine survey of hospitals—summary of results. Alexandria, VA: Samueli Institute; 2010. p. 2011.Google Scholar
  5. 5.
    White A, Ernst E. A brief history of acupuncture. Rheumatology. 2004;43(5):662–3.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang X. Acupuncture: review and analysis of reports on Controlled Clinical Trials World Health Organization; 2003. Available from: http://apps.who.int/medicinedocs/pdf/s4926e/s4926e.pdf.
  7. 7.
    A standard international acupuncture nomenclature: memorandum from a WHO meeting. Bull World Health Organiz 1990;68(2):165–9.Google Scholar
  8. 8.
    Asher GN, Jonas DE, Coeytaux RR, Reilly AC, Loh YL, Motsinger-Reif AA, et al. Auriculotherapy for PAIN management: a systematic review and meta-analysis of randomized controlled trials. J Altern Complement Med. 2010;16(10):1097–108.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Usichenko TI, Lehmann C, Ernst E. Auricular acupuncture for postoperative pain control: a systematic review of randomised clinical trials. Anaesthesia. 2008;63(12):1343–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Vickers AJ, Cronin AM, Maschino AC, Lewith G, MacPherson H, Foster NE, et al. Acupuncture for chronic pain: individual patient data meta-analysis. Arch Intern Med. 2012;172(19):1444–53.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Tan JY, Molassiotis A, Wang T, Suen LK. Adverse events of auricular therapy: a systematic review. Evid Based Complement Altern Med eCAM. 2014;2014:506758.Google Scholar
  12. 12.
    Wu J, Hu Y, Zhu Y, Yin P, Litscher G, Xu S. Systematic review of adverse effects: a further step towards modernization of acupuncture in China. Evid Based Complement Altern Med eCAM. 2015;2015:432467.Google Scholar
  13. 13.
    Janssen PA, Demorest LC, Kelly A, Thiessen P, Abrahams R. Auricular acupuncture for chemically dependent pregnant women: a randomized controlled trial of the NADA protocol. Subst Abuse Treat Prev Policy. 2012;7:48.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Cochrane S, Smith CA, Possamai-Inesedy A. Development of a fertility acupuncture protocol: defining an acupuncture treatment protocol to support and treat women experiencing conception delays. J Altern Complement Med. 2011;17(4):329–37.PubMedCrossRefGoogle Scholar
  15. 15.
    Li X, Hu J, Wang X, Zhang H, Liu J. Moxibustion and other acupuncture point stimulation methods to treat breech presentation: a systematic review of clinical trials. Chin Med. 2009;4:4.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Neri I, Airola G, Contu G, Allais G, Facchinetti F, Benedetto C. Acupuncture plus moxibustion to resolve breech presentation: a randomized controlled study. J Matern Fetal Neonatal Med (The Official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet). 2004;15(4):247–52.CrossRefGoogle Scholar
  17. 17.
    Zhang X, Cao B, Yan N, Liu J, Wang J, Tung VO, et al. Vagus nerve stimulation modulates visceral pain-related affective memory. Behav Brain Res. 2013;236(1):8–15.PubMedCrossRefGoogle Scholar
  18. 18.
    IASP Taxonomy. Available from: http://www.iasp-pain.org/Taxonomy.
  19. 19.
    van den Broeke EN, Mouraux A. Enhanced brain responses to C-fiber input in the area of secondary hyperalgesia induced by high-frequency electrical stimulation of the skin. J Neurophysiol. 2014;112(9):2059–66.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Schmid J, Langhorst J, Gass F, Theysohn N, Benson S, Engler H, et al. Placebo analgesia in patients with functional and organic abdominal pain: a fMRI study in IBS, UC and healthy volunteers. Gut. 2015;64(3):418–27.PubMedCrossRefGoogle Scholar
  21. 21.
    Osaka N, Osaka M, Morishita M, Kondo H, Fukuyama H. A word expressing affective pain activates the anterior cingulate cortex in the human brain: an fMRI study. Behav Brain Res. 2004;153(1):123–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Garza-Villarreal EA, Jiang Z, Vuust P, Alcauter S, Vase L, Pasaye EH, et al. Music reduces pain and increases resting state fMRI BOLD signal amplitude in the left angular gyrus in fibromyalgia patients. Front Psychol. 2015;6:1051.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Gosset N, Dietz N. Unlocking pain: deep brain stimulation might be the key to easing depression and chronic pain. IEEE Pulse. 2015;6(2):16–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Brain scans indicate that depression can increase pain perception. The Harvard Mental Health Letter from Harvard Medical School. 2009;25(9):7.Google Scholar
  25. 25.
    Asghar MS, Pereira MP, Werner MU, Martensson J, Larsson HB, Dahl JB. Correction: secondary hyperalgesia phenotypes exhibit differences in brain activation during noxious stimulation. PLoS ONE. 2015;10(5):e0128640.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Asghar MS, Pereira MP, Werner MU, Martensson J, Larsson HB, Dahl JB. Secondary hyperalgesia phenotypes exhibit differences in brain activation during noxious stimulation. PLoS ONE. 2015;10(1):e0114840.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fischer TZ, Waxman SG. Neuropathic pain in diabetes–evidence for a central mechanism. Nat Rev Neurol. 2010;6(8):462–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Rempe T, Wolff S, Riedel C, Baron R, Stroman PW, Jansen O, et al. Spinal fMRI reveals decreased descending inhibition during secondary mechanical hyperalgesia. PLoS ONE. 2014;9(11):e112325.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kunimoto M. [The peripheral mechanism of physiological pain]. Brain and Nerve = Shinkei kenkyu no shinpo. 2012;64(11):1205–14.Google Scholar
  30. 30.
    Chang S. The meridian system and mechanism of acupuncture—a comparative review. Part 2: mechanism of acupuncture analgesia. Taiwan J Obstet Gynecol. 2013;52(1):14–24.PubMedCrossRefGoogle Scholar
  31. 31.
    Hanson P, Schumacker P, Debugne T, Clerin M. Evaluation of somatic and autonomic small fibers neuropathy in diabetes. Am J Phys Med Rehabil Assoc Acad Physiatr. 1992;71(1):44–7.CrossRefGoogle Scholar
  32. 32.
    Introduction to Pain Pathways and Mechanisms.Google Scholar
  33. 33.
    Schlereth T, Birklein F. The sympathetic nervous system and pain. NeuroMol Med. 2008;10(3):141–7.CrossRefGoogle Scholar
  34. 34.
    Abramov R. Lumbar sympathetic treatment in the management of lower limb pain. Curr Pain Headache Rep. 2014;18(4):403.PubMedCrossRefGoogle Scholar
  35. 35.
    He W, Wang X, Shi H, Shang H, Li L, Jing X, et al. Auricular acupuncture and vagal regulation. Evid Based Complement Altern Med eCAM. 2012;2012:786839.Google Scholar
  36. 36.
    Usichenko TI, Lehmann C, Ernst E. Auricular acupuncture for postoperative pain control: a systematic review of randomised clinical trials. Anaesthesia. 2008;63(12):1343–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Sator-Katzenschlager SM, Michalek-Sauberer A. P-Stim auricular electroacupuncture stimulation device for pain relief. Expert Rev Med Devices. 2007;4(1):23–32.PubMedCrossRefGoogle Scholar
  38. 38.
  39. 39.
    Kaptchuk TJ. The web that has no weaver. Lincolnwood, Ill.; St. Albans: Contemporary; Verulam [distributor]; 2000.Google Scholar
  40. 40.
    Wiseman N. Fundamentals of Chinese medicine. Southfield, Michigan: Readings for the Blind; 2007.Google Scholar
  41. 41.
    Hayano DS. Measuring Qi Energy Available from: http://www.equilibrium-e3.com/images/PDF/Measuring%20Qi%20Energy.pdf.
  42. 42.
    Hui Lin PD. Overview of the status of Chinese Chi Research International Yan Xin Qigong Association. Available from: http://www.item-bioenergy.com/infocenter/chinesechiresearch.doc.
  43. 43.
    Traditional Chinese Medicine: Wikipedia. Available from: https://en.wikipedia.org/wiki/Traditional_Chinese_medicine.
  44. 44.
    Zhao ZQ. Neural mechanism underlying acupuncture analgesia. Prog Neurobiol. 2008;85(4):355–75.PubMedCrossRefGoogle Scholar
  45. 45.
    Shi R. Pain according to Chinese Medicine San Gabriel, Texas: Rei Shi Acupuncture Clinic. Available from: http://reishiacupuncture.com/page/pain-according-to-chinese-medicine.
  46. 46.
    Eades W. Ancient Chinese Medicine Meets Modern Anatomy Dissection: Acupuncture Today; 2015. January, 2015, Vol. 16, Issue 01. Available from: http://www.acupuncturetoday.com/mpacms/at/article.php?id=32980.
  47. 47.
    MacPherson H, Asghar A. Acupuncture needle sensations associated with De Qi: a classification based on experts’ ratings. J Altern Complement Med. 2006;12(7):633–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Tian DS, Xiong J, Pan Q, Liu F, Wang L, Xu SB, et al. De qi, a threshold of the stimulus intensity, elicits the specific response of acupoints and intrinsic change of human brain to acupuncture. Evid Based Complement Altern Med eCAM. 2014;2014:914878.CrossRefGoogle Scholar
  49. 49.
    Nierhaus T, Pach D, Huang W, Long X, Napadow V, Roll S, et al. Differential cerebral response to somatosensory stimulation of an acupuncture point vs. two non-acupuncture points measured with EEG and fMRI. Front Hum Neurosci. 2015;9:74.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Egot-Lemaire SJP, Ziskin MC. Dielectric properties of human skin at an acupuncture point in the 50–75 GHz frequency range A pilot study. Bioelectromagnetics. 2011;32(5):360–6.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ahn AC, Wu J, Badger GJ, Hammerschlag R, Langevin HM. Electrical impedance along connective tissue planes associated with acupuncture meridians. BMC Complement Altern Med. 2005;5(1):10.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Leung AY, Park J, Schulteis G, Duann JR, Yaksh T. The electrophysiology of de qi sensations. J Altern Complement Med. 2006;12(8):743–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhu L, Li C, Yang B, Ji C, Li W. The effect of neonatal capsaicin on acupuncture analgesia–to evaluate the role of C fibers in acupuncture analgesia. Zhen ci yan jiu = Acupuncture research [Zhongguo yi xue ke xue yuan Yi xue qing bao yan jiu suo bian ji]. 1990;15(4):285–91.Google Scholar
  54. 54.
    Cao X. Scientific bases of acupuncture analgesia. Acupunct Electrother Res. 2002;27(1):1–14.PubMedCrossRefGoogle Scholar
  55. 55.
    Li AH, Zhang JM, Xie YK. Human acupuncture points mapped in rats are associated with excitable muscle/skin-nerve complexes with enriched nerve endings. Brain Res. 2004;1012(1–2):154–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Helms J. The basic, clinical, and speculative science of acupuncture. In: Helms J, editor. Acupuncture energetics a clinical approach for physicians. Berkeley: Medical Acupuncture Publishers; 1995. p. 19–43.Google Scholar
  57. 57.
    Fuiyu Yip L. Tendinomuscular pain treatment with acupuncture. Available from: http://acupuncture-n-herbs.com/tendinomuscular-treatment-for-pain.
  58. 58.
    Leung A, Khadivi B, Duann JR, Cho ZH, Yaksh T. The effect of Ting point (tendinomuscular meridians) electroacupuncture on thermal pain: a model for studying the neuronal mechanism of acupuncture analgesia. J Altern Complement Med. 2005;11(4):653–61.PubMedCrossRefGoogle Scholar
  59. 59.
    Langevin HM, Churchill DL, Cipolla MJ. Mechanical signaling through connective tissue: a mechanism for the therapeutic effect of acupuncture. FASEB J: Official Publication of the Federation of American Societies for Experimental Biology. 2001;15(12):2275–82.CrossRefGoogle Scholar
  60. 60.
    Langevin HM, Churchill DL, Wu J, Badger GJ, Yandow JA, Fox JR, et al. Evidence of connective tissue involvement in acupuncture. FASEB J: Official Publication of the Federation of American Societies for Experimental Biology. 2002;16(8):872–4.Google Scholar
  61. 61.
    Yu Bai JW, Jin-peng Wu, et al. Review of evidence suggesting that the fascia network could be the anatomical basis for acupoints and meridians in the human body. Evid-Based Complement Altern Med. 2011.Google Scholar
  62. 62.
    Finando S, Finando D. Qi, acupuncture, and the fascia: a reconsideration of the fundamental principles of acupuncture. J Altern Complement Med. 2012;18(9):880–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Guo F, Song W, Jiang T, Liu L, Wang F, Zhong H, et al. Electroacupuncture pretreatment inhibits NADPH oxidase-mediated oxidative stress in diabetic mice with cerebral ischemia. Brain Res. 2014;1573:84–91.PubMedCrossRefGoogle Scholar
  64. 64.
    Bing Z, Villanueva L, Le Bars D. Acupuncture and diffuse noxious inhibitory controls: naloxone-reversible depression of activities of trigeminal convergent neurons. Neuroscience. 1990;37(3):809–18.PubMedCrossRefGoogle Scholar
  65. 65.
    Chung WY, Zhang HQ, Zhang SP. Peripheral muscarinic receptors mediate the anti-inflammatory effects of auricular acupuncture. Chin Med. 2011;6(1):3.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Mattson MP. Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann NY Acad Sci. 2008;1144:97–112.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Zhou W, Fu LW, Guo ZL, Longhurst JC. Role of glutamate in the rostral ventrolateral medulla in acupuncture-related modulation of visceral reflex sympathoexcitation. Am J Physiol Heart Circ Physiol. 2007;292(4):H1868–75.PubMedCrossRefGoogle Scholar
  68. 68.
    Guo Z, Zhang L, Wu Y, Li M, Yang X, He Z, et al. The role of glutamate transporter-1 in the acquisition of brain ischaemic tolerance in rats induced by electro-acupuncture pre-treatment. Brain Inj. 2015;29(3):396–402.PubMedCrossRefGoogle Scholar
  69. 69.
    Yang J, Liu WY, Song CY, Lin BC. Through central arginine vasopressin, not oxytocin and endogenous opiate peptides, glutamate sodium induces hypothalamic paraventricular nucleus enhancing acupuncture analgesia in the rat. Neurosci Res. 2006;54(1):49–56.PubMedCrossRefGoogle Scholar
  70. 70.
    Enna SJ, McCarson KE. The role of GABA in the mediation and perception of pain. Adv Pharmacol. 2006;54:1–27.PubMedCrossRefGoogle Scholar
  71. 71.
    Xu Q, Yang JW, Cao Y, Zhang LW, Zeng XH, Li F, et al. Acupuncture improves locomotor function by enhancing GABA receptor expression in transient focal cerebral ischemia rats. Neurosci Lett. 2015;588:88–94.PubMedCrossRefGoogle Scholar
  72. 72.
    McLennan H, Gilfillan K, Heap Y. Some pharmacological observations on the analgesia induced by acupuncture in rabbits. Pain. 1977;3(3):229–38.PubMedCrossRefGoogle Scholar
  73. 73.
    Pomeranz B, Nguyen P. Intrathecal diazepam suppresses nociceptive reflexes and potentiates electroacupuncture effects in pentobarbital-anesthetized rats. Neurosci Lett. 1987;77(3):316–20.PubMedCrossRefGoogle Scholar
  74. 74.
    ZHU Lixia YY, MO Xiaorong, JI Changfu. The important role of activation of GABA_B receptors in acupuncture analgesia. Acupunct Res. 2002.Google Scholar
  75. 75.
    Sommer C. Serotonin in pain and analgesia: actions in the periphery. Mol Neurobiol. 2004;30(2):117–25.PubMedCrossRefGoogle Scholar
  76. 76.
    Takagi J, Yonehara N. Serotonin receptor subtypes involved in modulation of electrical acupuncture. Jpn J Pharmacol. 1998;78(4):511–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Kim SK, Park JH, Bae SJ, Kim JH, Hwang BG, Min BI, et al. Effects of electroacupuncture on cold allodynia in a rat model of neuropathic pain: mediation by spinal adrenergic and serotonergic receptors. Exp Neurol. 2005;195(2):430–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Hu WB, Wu ZJ, Wang KM. Progress of researches on involvement of serotonin in the central nervous system in acupuncture analgesia and other effects. Zhen ci yan jiu = Acupuncture research/[Zhongguo yi xue ke xue yuan Yi xue qing bao yan jiu suo bian ji]. 2012;37(3):247–51.Google Scholar
  79. 79.
    Bravo-Hernandez M, Cervantes-Duran C, Pineda-Farias JB, Barragan-Iglesias P, Lopez-Sanchez P, Granados-Soto V. Role of peripheral and spinal 5-HT(3) receptors in development and maintenance of formalin-induced long-term secondary allodynia and hyperalgesia. Pharmacol Biochem Behav. 2012;101(2):246–57.PubMedCrossRefGoogle Scholar
  80. 80.
    Liu X, Zhu B, Zhang SX. Relationship between electroacupuncture analgesia and descending pain inhibitory mechanism of nucleus raphe magnus. Pain. 1986;24(3):383–96.PubMedCrossRefGoogle Scholar
  81. 81.
    Treister R, Pud D, Eisenberg E. The dopamine agonist apomorphine enhances conditioned pain modulation in healthy humans. Neurosci Lett. 2013;548:115–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Potvin S, Grignon S, Marchand S. Human evidence of a supra-spinal modulating role of dopamine on pain perception. Synapse. 2009;63(5):390–402.PubMedCrossRefGoogle Scholar
  83. 83.
    Millan MJ. Descending control of pain. Prog Neurobiol. 2002;66(6):355–474.PubMedCrossRefGoogle Scholar
  84. 84.
    Jarcho JM, Mayer EA, Jiang ZK, Feier NA, London ED. Pain, affective symptoms, and cognitive deficits in patients with cerebral dopamine dysfunction. Pain. 2012;153(4):744–54.PubMedCrossRefGoogle Scholar
  85. 85.
    Wood PB. Role of central dopamine in pain and analgesia. Expert Rev Neurother. 2008;8(5):781–97.PubMedCrossRefGoogle Scholar
  86. 86.
    Jaaskelainen SK, Lindholm P, Valmunen T, Pesonen U, Taiminen T, Virtanen A, et al. Variation in the dopamine D2 receptor gene plays a key role in human pain and its modulation by transcranial magnetic stimulation. Pain. 2014;155(10):2180–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Wang HH, Xu SF. Effect of D1 and D2 dopamine receptor antagonists on acupuncture analgesia. Sheng li xue bao: [Acta Physiologica Sinica]. 1993;45(1):61–8.Google Scholar
  88. 88.
    Dai JL, Xu SF. The attenuation effect of chlorpromazine on electro-acupuncture analgesia: involvement of dopamine system. Acupunct Electrother Res. 1991;16(3–4):101–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Liu XY, Zhou HF, Pan YL, Liang XB, Niu DB, Xue B, et al. Electro-acupuncture stimulation protects dopaminergic neurons from inflammation-mediated damage in medial forebrain bundle-transected rats. Exp Neurol. 2004;189(1):189–96.PubMedCrossRefGoogle Scholar
  90. 90.
    Gao X, Xin BM, Zhu CB, Wu GC, Xu SF. Effect of intrathecal injection of dopamine receptor agonists/antagonists on pain and acupuncture analgesia in rats. Sheng li xue bao: [Acta Physiologica Sinica]. 1998;50(1):43–8.Google Scholar
  91. 91.
    Wang HH, Zhu YH, Xu SF. The potentiation effect of haloperidol on the binding of etorphine to brain membranes in acupuncture analgesia. Sheng li xue bao: [Acta Physiologica Sinica]. 1994;46(4):313–9.Google Scholar
  92. 92.
    Leung L. Neurophysiological basis of acupuncture-induced analgesia—an updated review. J Acupunct Meridian Stud. 2012;5(6):261–70.PubMedCrossRefGoogle Scholar
  93. 93.
    Zhang Y, Qu H, Zhou Y, Wang Y, Zhang D, Yang X, et al. The involvement of norepinephrine in pain modulation in the nucleus accumbens of morphine-dependent rats. Neurosci Lett. 2015;585:6–11.PubMedCrossRefGoogle Scholar
  94. 94.
    Ono H, Nakamura A, Kanbara T, Minami K, Shinohara S, Sakaguchi G, et al. Effect of the norepinephrine transporter (NET) Effect of the norepinephrine transporter (NET) Effect of the norepinephrine transporter (NET) inhibition on mu-opioid receptor (MOR)-induced anti-nociception in a bone cancer pain model. J Pharmacol Sci. 2014;125(3):264–73.PubMedCrossRefGoogle Scholar
  95. 95.
    Cao J, Zhou MQ, Wu SB, Wang KM, Zhou YP, Wang YL, et al. Effects of acupuncture on expression of norepinephrine transporter mRNA in the cervical sympathetic ganglion and beta1-AR mRNA in the heart in cerebral-cardiac syndrome rats. Zhen ci yan jiu = Acupuncture research/[Zhongguo yi xue ke xue yuan Yi xue qing bao yan jiu suo bian ji]. 2011;36(4):252–7.Google Scholar
  96. 96.
    Wang H, Jiang J, Can X. Changes of norepinephrine release in rat’s nucleus reticularis paragigantocellularis lateralis in acupuncture analgesia. Zhen ci yan jiu = Acupuncture research/[Zhongguo yi xue ke xue yuan Yi xue qing bao yan jiu suo bian ji]. 1994;19(1):20–5.Google Scholar
  97. 97.
    Hackel D, Stolz A, Mousa SA, Brack A, Rittner HL. Recruitment of opioid peptide-containing neutrophils is independent of formyl peptide receptors. J Neuroimmunol. 2011;230(1–2):65–73.PubMedCrossRefGoogle Scholar
  98. 98.
    Mayer DJ, Price DD, Rafii A. Antagonism of acupuncture analgesia in man by the narcotic antagonist naloxone. Brain Res. 1977;121(2):368–72.PubMedCrossRefGoogle Scholar
  99. 99.
    Brissett DI, Whistler JL, van Rijn RM. Contribution of mu and delta opioid receptors to the pharmacological profile of kappa opioid receptor subtypes. Eur J Pain. 2012;16(3):327–37.PubMedCrossRefGoogle Scholar
  100. 100.
    Wang Y, Gehringer R, Mousa SA, Hackel D, Brack A, Rittner HL. CXCL10 controls inflammatory pain via opioid peptide-containing macrophages in electroacupuncture. PLoS ONE. 2014;9(4):e94696.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Nezhentsev M, Aleksandrov S. Effect of naloxone on the antipyretic action of acupuncture. Pharmacology. 1993;46(5):289–93.PubMedCrossRefGoogle Scholar
  102. 102.
    Wang Y, Zhang Y, Wang W, Cao Y, Han JS. Effects of synchronous or asynchronous electroacupuncture stimulation with low versus high frequency on spinal opioid release and tail flick nociception. Exp Neurol. 2005;192(1):156–62.PubMedCrossRefGoogle Scholar
  103. 103.
    Fearon AM, Twin J, Dahlstrom JE, Cook JL, Cormick W, Smith PN, et al. Increased substance P expression in the trochanteric bursa of patients with greater trochanteric pain syndrome. Rheumatol Int. 2014;34(10):1441–8.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Teodoro FC, Tronco Junior MF, Zampronio AR, Martini AC, Rae GA, Chichorro JG. Peripheral substance P and neurokinin-1 receptors have a role in inflammatory and neuropathic orofacial pain models. Neuropeptides. 2013;47(3):199–206.Google Scholar
  105. 105.
    Parenti C, Arico G, Ronsisvalle G, Scoto GM. Supraspinal injection of Substance P attenuates allodynia and hyperalgesia in a rat model of inflammatory pain. Peptides. 2012;34(2):412–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Ebner K, Singewald N. The role of substance P in stress and anxiety responses. Amino Acids. 2006;31(3):251–72.PubMedCrossRefGoogle Scholar
  107. 107.
    Lee HJ, Lee JH, Lee EO, Kim KH, Kim SH, Lee KS, et al. Substance P and beta-endorphin mediate electro-acupuncture induced analgesia in mouse cancer pain model. J Exp Clin Cancer Res CR. 2009;28:102.PubMedCrossRefGoogle Scholar
  108. 108.
    Ma XP, Tan LY, Yang Y, Wu HG, Jiang B, Liu HR, et al. Effect of electro-acupuncture on substance P, its receptor and corticotropin-releasing hormone in rats with irritable bowel syndrome. World J Gastroenterol WJG. 2009;15(41):5211–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Mackey S. Mechanisms of inflammatory pain: therapeutic implications. J Clin Rheumatol Pract Reports Rheum musculoskelet Dis. 2004;10(3 Suppl):S5–11.Google Scholar
  110. 110.
    Ji RR. Peripheral and central mechanisms of inflammatory pain, with emphasis on MAP kinases. Curr Drug Targets Inflamm Allergy. 2004;3(3):299–303.PubMedCrossRefGoogle Scholar
  111. 111.
    Lin JG, Chen WL. Acupuncture analgesia: a review of its mechanisms of actions. Am J Chin Med. 2008;36(4):635–45.PubMedCrossRefGoogle Scholar
  112. 112.
    Nager AL, Kobylecka M, Pham PK, Johnson L, Gold JI. Effects of acupuncture on pain and inflammation in pediatric emergency department patients with acute appendicitis: a pilot study. J Altern Complement Med. 2015;21(5):269–72.PubMedCrossRefGoogle Scholar
  113. 113.
    Cao L, Zhang XL, Gao YS, Jiang Y. Needle acupuncture for osteoarthritis of the knee. A systematic review and updated meta-analysis. Saudi Med J. 2012;33(5):526–32.PubMedGoogle Scholar
  114. 114.
    Wang C, de Pablo P, Chen X, Schmid C, McAlindon T. Acupuncture for pain relief in patients with rheumatoid arthritis: a systematic review. Arthritis Rheum. 2008;59(9):1249–56.PubMedCrossRefGoogle Scholar
  115. 115.
    Levine JD, Gordon NC, Bornstein JC, Fields HL. Role of pain in placebo analgesia. Proc Natl Acad Sci USA. 1979;76(7):3528–31.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Atlas LY, Wager TD. A meta-analysis of brain mechanisms of placebo analgesia: consistent findings and unanswered questions. Handb Exp Pharmacol. 2014;225:37–69.PubMedCrossRefGoogle Scholar
  117. 117.
    Kam-Hansen S, Jakubowski M, Kelley JM, Kirsch I, Hoaglin DC, Kaptchuk TJ, et al. Altered placebo and drug labeling changes the outcome of episodic migraine attacks. Sci Transl Med. 2014;6(218):218ra5.Google Scholar
  118. 118.
    Vase L, Vollert J, Finnerup NB, Miao X, Atkinson G, Marshall S, et al. Predictors of the placebo analgesia response in randomized controlled trials of chronic pain: a meta-analysis of the individual data from nine industrially sponsored trials. Pain. 2015;156(9):1795–802.PubMedCrossRefGoogle Scholar
  119. 119.
    Le Bars D, Dickenson AH, Besson JM. Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat. Pain. 1979;6(3):283–304.PubMedCrossRefGoogle Scholar
  120. 120.
    Xiong J, Liu F, Zhang MM, Wang W, Huang GY. De-qi, not psychological factors, determines the therapeutic efficacy of acupuncture treatment for primary dysmenorrhea. Chin J Integr Med. 2012;18(1):7–15.PubMedCrossRefGoogle Scholar
  121. 121.
    Chiu YH, Silman AJ, Macfarlane GJ, Ray D, Gupta A, Dickens C, et al. Poor sleep and depression are independently associated with a reduced pain threshold. Results of a population based study. Pain. 2005;115(3):316–21.PubMedCrossRefGoogle Scholar
  122. 122.
    Wang XJ, Wang LL. A mechanism of endogenous opioid peptides for rapid onset of acupuncture effect in treatment of depression. Zhong xi yi jie he xue bao = J Chin Integr Med. 2010;8(11):1014–7.CrossRefGoogle Scholar
  123. 123.
    Bohren Y, Tessier LH, Megat S, Petitjean H, Hugel S, Daniel D, et al. Antidepressants suppress neuropathic pain by a peripheral beta2-adrenoceptor mediated anti-TNFalpha mechanism. Neurobiol Dis. 2013;60:39–50.PubMedCrossRefGoogle Scholar
  124. 124.
    Lazzeri L, Vannuccini S, Orlandini C, Luisi S, Zupi E, Nappi RE, et al. Surgical treatment affects perceived stress differently in women with endometriosis: correlation with severity of pain. Fertil Steril. 2015;103(2):433–8.PubMedCrossRefGoogle Scholar
  125. 125.
    Eshkevari L, Permaul E, Mulroney SE. Acupuncture blocks cold stress-induced increases in the hypothalamus-pituitary-adrenal axis in the rat. J Endocrinol. 2013;217(1):95–104.PubMedCrossRefGoogle Scholar
  126. 126.
    Kong JT, Schnyer RN, Johnson KA, Mackey S. Understanding central mechanisms of acupuncture analgesia using dynamic quantitative sensory testing: a review. Evid Based Complement Altern Med eCAM. 2013;2013:187182.Google Scholar
  127. 127.
    Olesen SS, van Goor H, Bouwense SA, Wilder-Smith OH, Drewes AM. Reliability of static and dynamic quantitative sensory testing in patients with painful chronic pancreatitis. Reg Anesth Pain Med. 2012;37(5):530–6.PubMedCrossRefGoogle Scholar
  128. 128.
    Arendt-Nielsen L, Yarnitsky D. Experimental and clinical applications of quantitative sensory testing applied to skin, muscles and viscera. J Pain: Official Journal of the American Pain Society. 2009;10(6):556–72.CrossRefGoogle Scholar
  129. 129.
    Zheng Z, Feng SJ, Costa C, Li CG, Lu D, Xue CC. Acupuncture analgesia for temporal summation of experimental pain: a randomised controlled study. Eur J Pain. 2010;14(7):725–31.PubMedCrossRefGoogle Scholar
  130. 130.
    Tobbackx Y, Meeus M, Wauters L, De Vilder P, Roose J, Verhaeghe T, et al. Does acupuncture activate endogenous analgesia in chronic whiplash-associated disorders? A randomized crossover trial. Eur J Pain. 2013;17(2):279–89.PubMedCrossRefGoogle Scholar
  131. 131.
    Le Bars D, Villanueva L, Bouhassira D, Willer JC. Diffuse noxious inhibitory controls (DNIC) in animals and in man. Patologicheskaia fiziologiia i eksperimental’naia terapiia. 1992;4:55–65.Google Scholar
  132. 132.
    Pud D, Granovsky Y, Yarnitsky D. The methodology of experimentally induced diffuse noxious inhibitory control (DNIC)-like effect in humans. Pain. 2009;144(1–2):16–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Schliessbach J, van der Klift E, Siegenthaler A, Arendt-Nielsen L, Curatolo M, Streitberger K. Does acupuncture needling induce analgesic effects comparable to diffuse noxious inhibitory controls? Evid Based Complement Altern Med eCAM. 2012;2012:785613.CrossRefGoogle Scholar
  134. 134.
    Hui KK, Liu J, Makris N, Gollub RL, Chen AJ, Moore CI, et al. Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects. Hum Brain Mapp. 2000;9(1):13–25.PubMedCrossRefGoogle Scholar
  135. 135.
    Liu WC, Feldman SC, Cook DB, Hung DL, Xu T, Kalnin AJ, et al. fMRI study of acupuncture-induced periaqueductal gray activity in humans. NeuroReport. 2004;15(12):1937–40.PubMedCrossRefGoogle Scholar
  136. 136.
    Yoo SS, Teh EK, Blinder RA, Jolesz FA. Modulation of cerebellar activities by acupuncture stimulation: evidence from fMRI study. NeuroImage. 2004;22(2):932–40.PubMedCrossRefGoogle Scholar
  137. 137.
    Jeun SS, Kim JS, Kim BS, Park SD, Lim EC, Choi GS, et al. Acupuncture stimulation for motor cortex activities: a 3T fMRI study. Am J Chin Med. 2005;33(4):573–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Qin W, Tian J, Bai L, Pan X, Yang L, Chen P, et al. FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network. Mol Pain. 2008;4:55.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Chen Y, Wang Y, Yin Q. The role of paraventricular nucleus of hypothalamus in acupuncture analgesia in rats. Zhen ci yan jiu = Acupuncture Research [Zhongguo yi xue ke xue yuan Yi xue qing bao yan jiu suo bian ji]. 1991;16(1):32–8.Google Scholar
  140. 140.
    Napadow V, Dhond RP, Purdon P, Kettner N, Makris N, Kwong KK, et al. Correlating acupuncture FMRI in the human brainstem with heart rate variability. Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society annual conference. 2005;5:4496–9.Google Scholar
  141. 141.
    Vargas CA, Helms Medical I. Medical acupuncture for physicians: a pocket clinical reference guide. Berkeley, California: Medical Acupuncture Publishers; 2004.Google Scholar
  142. 142.
    Shukla S, Torossian A, Duann JR, Leung A. The analgesic effect of electroacupuncture on acute thermal pain perception—a central neural correlate study with fMRI. Mol Pain. 2011;7:45.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    The Eight Influential Points. Available from: http://www.acupuncture.com/education/theory/eightpts.htm.
  144. 144.
    Leung A, Zhao Y, Shukla S. The effect of acupuncture needle combination on central pain processing—an fMRI study. Mol Pain. 2014;10:23.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Napadow V, Makris N, Liu J, Kettner NW, Kwong KK, Hui KK. Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI. Hum Brain Mapp. 2005;24(3):193–205.PubMedCrossRefGoogle Scholar
  146. 146.
    Li L, Liu H, Li YZ, Xu JY, Shan BC, Gong D, et al. The human brain response to acupuncture on same-meridian acupoints: evidence from an fMRI study. J Altern Complement Med. 2008;14(6):673–8.PubMedCrossRefGoogle Scholar
  147. 147.
    Bai L, Tian J, Zhong C, Xue T, You Y, Liu Z, et al. Acupuncture modulates temporal neural responses in wide brain networks: evidence from fMRI study. Molecular Pain. 2010;6:73.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Usichenko TI, Wesolowski T, Lotze M. Verum and sham acupuncture exert distinct cerebral activation in pain processing areas: a crossover fMRI investigation in healthy volunteers. Brain Imaging Behav. 2015;9(2):236–44.PubMedCrossRefGoogle Scholar
  149. 149.
    Huang W, Pach D, Napadow V, Park K, Long X, Neumann J, et al. Characterizing acupuncture stimuli using brain imaging with FMRI—a systematic review and meta-analysis of the literature. PLoS ONE. 2012;7(4):e32960.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Xudong G. Clinical study on analgesia for biliary colic with ear acupuncture at point Erzhong. Am J Acupunct. 1993;21(3):237–9.Google Scholar
  152. 152.
    Arai YC, Sakakima Y, Kawanishi J, Nishihara M, Ito A, Tawada Y, et al. Auricular acupuncture at the “shenmen” and “point zero” points induced parasympathetic activation. Evid Based Complement Altern Med eCAM. 2013;2013:945063.Google Scholar
  153. 153.
    La Marca R, Nedeljkovic M, Yuan L, Maercker A, Elhert U. Effects of auricular electrical stimulation on vagal activity in healthy men: evidence from a three-armed randomized trial. Clinical Sci (London, England: 1979). 2010;118(8):537–46.Google Scholar
  154. 154.
    Sator-Katzenschlager SM, Michalek-Sauberer A. P-Stim (TM) auricular electroacupuncture stimulation device for pain relief. Expert Rev Med Devices. 2007;4(1):23–32.PubMedCrossRefGoogle Scholar
  155. 155.
    Najafi S, Halstead-Kenny J. Applying auricular electroacupuncture device (P-STIM) for chronic lumbar radiculopathy. Am J Phys Med Rehabil. 2014:a33-a.Google Scholar
  156. 156.
    Holzer A, Leitgeb U, Spacek A, Wenzl R, Herkner H, Kettner S. Auricular acupuncture for postoperative pain after gynecological surgery: a randomized controlled trail. Minerva Anestesiol. 2011;77(3):298–304.PubMedGoogle Scholar
  157. 157.
    Sator-Katzenschlager SM, Wolfler MM, Kozek-Langenecker SA, Sator K, Sator PG, Li B, et al. Auricular electro-acupuncture as an additional perioperative analgesic method during oocyte aspiration in IVF treatment. Hum Reprod. 2006;21(8):2114–20.PubMedCrossRefGoogle Scholar
  158. 158.
    Likar R, Jabarzadeh H, Kager I, Trampitsch E, Breschan C, Szeles J. Electrical point stimulation (P-STIM) via ear acupuncture: a randomized, double-blind, controlled pilot study in patients undergoing laparoscopic nephrctomyX. Schmerz (Berlin, Germany) [Internet]. 2007; 21(2):154–9. Available from: http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/702/CN-00586702/frame.html, http://link.springer.com/article/10.1007%2Fs00482-006-0519-y.
  159. 159.
    Kager H, Likar R, Jabarzadeh H, Sittl R, Breschan C, Szeles J. Electrical punctual stimulation (P-STIM) with ear acupuncture following tonsillectomy, a randomised, controlled pilot study. Acute Pain. 2009;11(3–4):101–6.CrossRefGoogle Scholar
  160. 160.
    Kong KH, Ng WW. Treatment of chronic pain with an auricular acupuncture device (P-Stim) in Singapore. Acupunct Med (Journal of the British Medical Acupuncture Society). 2009;27(4):187–8.CrossRefGoogle Scholar
  161. 161.
    Goertz CM, Niemtzow R, Burns SM, Fritts MJ, Crawford CC, Jonas WB. Auricular acupuncture in the treatment of acute pain syndromes: a pilot study. Mil Med. 2006;171(10):1010–4.PubMedCrossRefGoogle Scholar
  162. 162.
    Niemtzow RC. Battlefield acupuncture. J Acupunct Assoc Chart Physiother. 2010:55–9.Google Scholar
  163. 163.
    Pickett H. Battlefield acupuncture. J Chin Med. 2011;96:14–7.Google Scholar
  164. 164.
    Niemtzow RC, Litscher G, Burns SM, Helms JM. Battlefield acupuncture: update. Med Acupunct. 2009;21(1):43–6.CrossRefGoogle Scholar
  165. 165.
    Plunkett A, Turabi A, Wilkinson I. Battlefield analgesia: a brief review of current trends and concepts in the treatment of pain in US military casualties from the conflicts in Iraq and Afghanistan. Pain Manag. 2012;2(3):231–8.PubMedCrossRefGoogle Scholar
  166. 166.
    Soliman N. Pain: an evidence-based approach through the auricular acupuncture microsystem. Med Acupunct. 2008;20(4):263–7.CrossRefGoogle Scholar
  167. 167.
    Napadow V, Edwards RR, Cahalan CM, Mensing G, Greenbaum S, Valovska A, et al. Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation. Pain Med. 2012;13(6):777–89.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Laqua R, Leutzow B, Wendt M, Usichenko T. Transcutaneous vagal nerve stimulation may elicit anti- and pro-nociceptive effects under experimentally-induced pain—a crossover placebo-controlled investigation. Auton Neurosci Basic & Clinic. 2014;185:120–2.CrossRefGoogle Scholar
  169. 169.
    Ceccherelli F, Manani G, Ambrosio F, Angel A, Valenti S, Facco E, et al. Influence of acupuncture on the postoperative complications following ketamine anesthesia. The importance of manual stimulation of point R and shen menn. Acupunct Electrother Res. 1981;6(4):255–64.PubMedCrossRefGoogle Scholar
  170. 170.
    Bai L, Yan H, Li L, Qin W, Chen P, Liu P, et al. Neural specificity of acupuncture stimulation at pericardium 6: evidence from an FMRI study. J Magn Reson Imaging JMRI. 2010;31(1):71–7.PubMedCrossRefGoogle Scholar
  171. 171.
    Chong PS, Cros DP. Technology literature review: quantitative sensory testing. Muscle Nerve. 2004;29(5):734–47.PubMedCrossRefGoogle Scholar
  172. 172.
    Beissner F, Henke C. Methodological problems in FMRI studies on acupuncture: a critical review with special emphasis on visual and auditory cortex activations. Evid Based Complement Altern Med eCAM. 2011;2011:607637.Google Scholar
  173. 173.
    Langevin HM, Wayne PM, Macpherson H, Schnyer R, Milley RM, Napadow V, et al. Paradoxes in acupuncture research: strategies for moving forward. Evid Based Complement Altern Med eCAM. 2011;2011:180805.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of California in San Diego (UCSD)La JollaUSA

Personalised recommendations