Advertisement

The Neuroimaging of Vicarious Pain

  • Esslin L. Terrighena
  • Tatia M. C. Lee
Chapter

Abstract

The similarities between self-experienced and vicarious pain have led research to suggest that both experiences may be facilitated by shared neural representations. Indeed, neuroimaging evidence demonstrates an overlap in neural patterns during self- and other-pain. Such comparable brain activity may facilitate an empathic understanding of the current state of the individual in pain by stimulating relevant pain associations in the own sensory, affective and cognitive systems. However, research further shows the distinct contributions of neural activity during vicarious pain processing, in particular in brain regions related to perspective-taking, attention and top-down response regulation. Likewise, such activity may underpin response formation to the observed pain, such as empathic or withdrawal behaviors. This chapter reviews 31 fMRI, six EEG/MEG and four TMS studies exploring the neural correlates of vicarious pain in healthy individuals. Both shared and distinct neural contributions to stimulus and response processing during vicarious pain are discussed. Notably, an integrative model of vicarious pain is introduced which brings such contributions together in a comprehensive manner. Moreover, the chapter highlights inconsistencies and research gaps in current literature with the aim of stimulating further scientific investigation. This is pertinent to the detection of neurobiological markers and intervention targets for empathic deficits which characterize a wide variety of clinical health issues.

Keywords

Empathic Perception-action model (PAM) Motor cortex Self-pain Mirror neuron 

Abbreviations

Brain Regions

IFG

Inferior Frontal Gyrus

IPL

Inferior Parietal Lobule

SI, SII

Primary Somatosensory Cortex, Secondary Somatosensory Cortex

PFC

Prefrontal Cortex

INS

Insula

aINS, mINS, pINS

Anterior Insula, Mid-Insula, Posterior Insula

CC, ACC, PCC

Cingulate Cortex, Anterior Cingulate Cortex, Posterior Cingulate Cortex

sgACC, rACC

subgenual ACC, rostral ACC

MCC, aMCC

Midcingulate Cortex, Anterior MCC

dlPFC, dmPFC, mPFC, rlPFC

dorsolateral PFC, dorsomedial PFC, medial PFC, rostrolateral PFC

SMA

Supplementary Motor Area

Neuroimaging Methods

fMRI

functional Magnetic Resonance Imaging

EEG

Electroencephalography

MEG

Magnetoencephalography

TMS

Transcranial Magnetic Stimulation

Models

PAM

Perception Action Model

Notes

Acknowledgements

This work was supported by the May Endowed Professorship of The University of Hong Kong, the Research Grants Council Humanities and Social Sciences Prestigious Fellowship (Ref: HKU703-HSS-13). The funders have no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  1. 1.
    Akitsuki Y, Decety J. Social context and perceived agency affects empathy for pain: an event-related fMRI investigation. Neuroimage. 2009;47(2):722–34.PubMedCrossRefGoogle Scholar
  2. 2.
    Amodio DM, Frith CD. Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci. 2006;7(4):268–77.PubMedCrossRefGoogle Scholar
  3. 3.
    Avenanti A, Aglioti SM. The sensorimotor side of empathy for pain. In: Psychoanalysis and neuroscience. Berlin: Springer; 2006. p. 235–56.Google Scholar
  4. 4.
    Avenanti A, Bueti D, Galati G, Aglioti SM. Transcranial magnetic stimulation highlights the sensorimotor side of empathy for pain. Nat Neurosci. 2005;8(7):955–60.PubMedCrossRefGoogle Scholar
  5. 5.
    Avenanti A, Minio-Paluello I, Bufalari I, Aglioti SM. The pain of a model in the personality of an onlooker: influence of state-reactivity and personality traits on embodied empathy for pain. Neuroimage. 2009;44(1):275–83.PubMedCrossRefGoogle Scholar
  6. 6.
    Avenanti A, Paluello IM, Bufalari I, Aglioti SM. Stimulus-driven modulation of motor-evoked potentials during observation of others’ pain. Neuroimage. 2006;32(1):316–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Avenanti A, Sirigu A, Aglioti SM. Racial bias reduces empathic sensorimotor resonance with other-race pain. Curr Biol. 2010;20(11):1018–22.PubMedCrossRefGoogle Scholar
  8. 8.
    Azevedo RT, Macaluso E, Avenanti A, Santangelo V, Cazzato V, Aglioti SM. Their pain is not our pain: brain and autonomic correlates of empathic resonance with the pain of same and different race individuals. Hum Brain Mapp. 2013;34(12):3168–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Bantick Wise RG, Ploghaus A, Clare S, Smith SM, Tracey I. Imaging how attention modulates pain in humans using functional MRI. Brain. 2002;125(2):310–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Bar M. A cortical mechanism for triggering top-down facilitation in visual object recognition. J Cogn Neurosci. 2003;15(4):600–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Bellet PS, Maloney MJ. The importance of empathy as an interviewing skill in medicine. JAMA. 1991;266(13):1831–2.PubMedCrossRefGoogle Scholar
  12. 12.
    Benedetti F, Bernasconi A, Bosia M, Cavallaro R, Dallaspezia S, Falini A, Poletti S, Radaelli D, Riccaboni R, Scotti G. Functional and structural brain correlates of theory of mind and empathy deficits in schizophrenia. Schizophr Res. 2009;114(1):154–60.PubMedCrossRefGoogle Scholar
  13. 13.
    Benuzzi F, Lui F, Duzzi D, Nichelli PF, Porro CA. Does it look painful or disgusting? Ask your parietal and cingulate cortex. J Neurosci. 2008;28(4):923–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Bernhardt BC, Singer T. The neural basis of empathy. Annu Rev Neurosci. 2012;35:1–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Betti V, Zappasodi F, Rossini PM, Aglioti SM, Tecchio F. Synchronous with your feelings: sensorimotor γ band and empathy for pain. J Neurosci. 2009;29(40):12384–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Bingel U, Lorenz J, Glauche V, Knab R, Gläscher J, Weiller C, Büchel C. Somatotopic organization of human somatosensory cortices for pain: a single trial fMRI study. Neuroimage. 2004;23(1):224–32.PubMedCrossRefGoogle Scholar
  17. 17.
    Bingel U, Quante M, Knab R, Bromm B, Weiller C, Büchel C. Subcortical structures involved in pain processing: evidence from single-trial fMRI. Pain. 2002;99(1):313–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Blair RJR. Responding to the emotions of others: dissociating forms of empathy through the study of typical and psychiatric populations. Conscious Cogn. 2005;14(4):698–718.PubMedCrossRefGoogle Scholar
  19. 19.
    Borckardt JJ, Reeves ST, Beam W, Jensen MP, Gracely RH, Katz S, Smith AR, Madan A, Patterson D, George MS. A randomized, controlled investigation of motor cortex transcranial magnetic stimulation (TMS) effects on quantitative sensory measures in healthy adults: evaluation of TMS device parameters. Clin J pain. 2011;27(6):486.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Borckardt JJ, Smith AR, Reeves ST, Weinstein M, Kozel FA, Nahas Z, Shelley N, Branham RK, Thomas KJ, George MS. Fifteen minutes of left prefrontal repetitive transcranial magnetic stimulation acutely increases thermal pain thresholds in healthy adults. Pain Res Manag (The Journal of the Canadian Pain Society). 2007;12(4):287.CrossRefGoogle Scholar
  21. 21.
    Botvinick M, Cohen JD, Carter CS. Conflict monitoring and anterior cingulate cortex: an update. Trends in cognitive sciences. 2004;8(12):539–46.PubMedCrossRefGoogle Scholar
  22. 22.
    Botvinick M, Jha AP, Bylsma LM, Fabian SA, Solomon PE, Prkachin KM. Viewing facial expressions of pain engages cortical areas involved in the direct experience of pain. Neuroimage. 2005;25(1):312–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Brooks J, Zambreanu L, Godinez A, Craig A, Tracey I. Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. Neuroimage. 2005;27(1):201–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Brown CA, Jones AKP. A role for midcingulate cortex in the interruptive effects of pain anticipation on attention. Clin Neurophysiol. 2008;119(10):2370–9. doi: 10.1016/j.clinph.2008.06.014.PubMedCrossRefGoogle Scholar
  25. 25.
    Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci. 2001;13(2):400–4.PubMedGoogle Scholar
  26. 26.
    Budell L, Jackson P, Rainville P. Brain responses to facial expressions of pain: emotional or motor mirroring? Neuroimage. 2010;53(1):355–63.PubMedCrossRefGoogle Scholar
  27. 27.
    Bufalari I, Aprile T, Avenanti A, Di Russo F, Aglioti SM. Empathy for pain and touch in the human somatosensory cortex. Cereb Cortex. 2007;17(11):2553–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Bufalari I, Ionta S. The social and personality neuroscience of empathy for pain and touch. Front Human Neurosci. 2013;7.Google Scholar
  29. 29.
    Buffington AL, Hanlon CA, McKeown MJ. Acute and persistent pain modulation of attention-related anterior cingulate fMRI activations. Pain. 2005;113(1):172–84.PubMedCrossRefGoogle Scholar
  30. 30.
    Bushnell M, Duncan G, Hofbauer R, Ha B, Chen J-I, Carrier B. Pain perception: is there a role for primary somatosensory cortex? Proc Natl Acad Sci. 1999;96(14):7705–9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Carr L, Iacoboni M, Dubeau M-C, Mazziotta JC, Lenzi GL. Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas. Proc Natl Acad Sci. 2003;100(9):5497–502.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Carter AE, Carter G, Boschen M, Al Shwaimi E, George R. Pathways of fear and anxiety in dentistry: a review. World J Clin Cases WJCC. 2014;2(11):642.PubMedCrossRefGoogle Scholar
  33. 33.
    Carter CS, Van Veen V. Anterior cingulate cortex and conflict detection: an update of theory and data. Cogn Affect Behav Neurosci. 2007;7(4):367–79.PubMedCrossRefGoogle Scholar
  34. 34.
    Caspers S, Zilles K, Laird AR, Eickhoff SB. ALE meta-analysis of action observation and imitation in the human brain. Neuroimage. 2010;50(3):1148–67.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Cerami C, Dodich A, Canessa N, Crespi C, Iannaccone S, Corbo M, Lunetta C, Consonni M, Scola E, Falini A. Emotional empathy in amyotrophic lateral sclerosis: a behavioural and voxel-based morphometry study. Amyotrophic Lateral Scler Frontotemporal Degeneration. 2014;15(1–2):21–9.CrossRefGoogle Scholar
  36. 36.
    Cheng Y, Chen C, Lin C-P, Chou K-H, Decety J. Love hurts: an fMRI study. Neuroimage. 2010;51(2):923–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Cheng Y, Lin C-P, Liu H-L, Hsu Y-Y, Lim K-E, Hung D, Decety J. Expertise modulates the perception of pain in others. Curr Biol. 2007;17(19):1708–13.PubMedCrossRefGoogle Scholar
  38. 38.
    Cheng Y, Yang C-Y, Lin C-P, Lee P-L, Decety J. The perception of pain in others suppresses somatosensory oscillations: a magnetoencephalography study. Neuroimage. 2008;40(4):1833–40.PubMedCrossRefGoogle Scholar
  39. 39.
    Chong TT-J, Cunnington R, Williams MA, Kanwisher N, Mattingley JB. fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Curr Biol. 2008;18(20):1576–80.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Churchland MM, Byron MY, Ryu SI, Santhanam G, Shenoy KV. Neural variability in premotor cortex provides a signature of motor preparation. J Neurosci. 2006;26(14):3697–712.PubMedCrossRefGoogle Scholar
  41. 41.
    Cioni B, Meglio M. Motor cortex stimulation for chronic non-malignant pain: current state and future prospects. In: Operative neuromodulation. Berlin: Springer; 2007. p. 45–9.Google Scholar
  42. 42.
    Coghill R. Individual differences in the subjective experience of pain: new insights into mechanisms and models. Headache: J Head Face Pain 2010;50(9):1531–5. doi: 10.1111/j.1526-4610.2010.01763.x.
  43. 43.
    Coghill R, McHaffie JG, Yen Y-F. Neural correlates of interindividual differences in the subjective experience of pain. Proc Natl Acad Sci. 2003;100(14):8538–42.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Coghill R, Sang CN, Maisog JM, Iadarola MJ. Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol. 1999;82(4):1934–43.PubMedGoogle Scholar
  45. 45.
    Cook R, Bird G, Catmur C, Press C, Heyes C. Mirror neurons: from origin to function. Behav Brain Sci. 2014;37(02):177–92.PubMedCrossRefGoogle Scholar
  46. 46.
    Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron. 2008;58(3):306–24.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–15.PubMedCrossRefGoogle Scholar
  48. 48.
    Corradi-Dell’Acqua C, Hofstetter C, Vuilleumier P. Felt and seen pain evoke the same local patterns of cortical activity in insular and cingulate cortex. J Neurosci. 2011;31(49):17996–8006.PubMedCrossRefGoogle Scholar
  49. 49.
    Costantini M, Galati G, Romani GL, Aglioti SM. Empathic neural reactivity to noxious stimuli delivered to body parts and non-corporeal objects. Eur J Neurosci. 2008;28(6):1222–30.PubMedCrossRefGoogle Scholar
  50. 50.
    Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3(8):655–66.PubMedCrossRefGoogle Scholar
  51. 51.
    Critchley HD, Wiens S, Rotshtein P, Öhman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7(2):189–95.PubMedCrossRefGoogle Scholar
  52. 52.
    Crockett MJ, Clark L, Hauser MD, Robbins TW. Serotonin selectively influences moral judgment and behavior through effects on harm aversion. Proc Natl Acad Sci. 2010;107(40):17433–8.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Crombez G, Eccleston C, Baeyens F, Eelen P. Attentional disruption is enhanced by the threat of pain. Behav Res Ther. 1998;36(2):195–204. doi: 10.1016/S0005-7967(97)10008-0.PubMedCrossRefGoogle Scholar
  54. 54.
    Csibra G. Action mirroring and action understanding: an alternative account. Sensorymotor Found Higher Cogn Attention Perform. 2008;XXII:435–59.Google Scholar
  55. 55.
    Cummins A, Piek JP, Dyck MJ. Motor coordination, empathy, and social behaviour in school-aged children. Dev Med Child Neurol. 2005;47(7):437–42.PubMedCrossRefGoogle Scholar
  56. 56.
    Cusi AM, Nazarov A, Holshausen K, MacQueen GM, McKinnon MC. Systematic review of the neural basis of social cognition in patients with mood disorders. J Psychiatry Neurosci JPN. 2012;37(3):154.PubMedCrossRefGoogle Scholar
  57. 57.
    Danziger N, Faillenot I, Peyron R. Can we share a pain we never felt? Neural correlates of empathy in patients with congenital insensitivity to pain. Neuron. 2009;61(2):203–12.PubMedCrossRefGoogle Scholar
  58. 58.
    Danziger N, Prkachin KM, Willer J-C. Is pain the price of empathy? The perception of others’ pain in patients with congenital insensitivity to pain. Brain. 2006;129(9):2494–507.PubMedCrossRefGoogle Scholar
  59. 59.
    Davis KD, Taylor SJ, Crawley AP, Wood ML, Mikulis DJ. Functional MRI of pain-and attention-related activations in the human cingulate cortex. J Neurophysiol. 1997;77(6):3370–80.PubMedGoogle Scholar
  60. 60.
    De Gelder B, Snyder J, Greve D, Gerard G, Hadjikhani N. Fear fosters flight: a mechanism for fear contagion when perceiving emotion expressed by a whole body. Proc Natl Acad Sci U S A. 2004;101(47):16701–6.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    De Vignemont F, Jacob P. What is it like to feel another’s pain?*. Philos Sci. 2012;79(2):295–316.CrossRefGoogle Scholar
  62. 62.
    De Vignemont F, Singer T. The empathic brain: how, when and why? Trends in cognitive sciences. 2006;10(10):435–41.PubMedCrossRefGoogle Scholar
  63. 63.
    De Waal FB. Putting the altruism back into altruism: the evolution of empathy. Annu Rev Psychol. 2008;59:279–300.PubMedCrossRefGoogle Scholar
  64. 64.
    Decety J. To what extent is the experience of empathy mediated by shared neural circuits? Emot Rev. 2010;2(3):204–7.CrossRefGoogle Scholar
  65. 65.
    Decety J. Dissecting the neural mechanisms mediating empathy. Emot Rev. 2011;3(1):92–108.CrossRefGoogle Scholar
  66. 66.
    Decety J, Echols S, Correll J. The blame game: the effect of responsibility and social stigma on empathy for pain. J Cogn Neurosci. 2010;22(5):985–97.PubMedCrossRefGoogle Scholar
  67. 67.
    Decety J, Jackson PL. The functional architecture of human empathy. Behav Cogn Neurosci Rev. 2004;3(2):71–100.PubMedCrossRefGoogle Scholar
  68. 68.
    Decety J, Yang C-Y, Cheng Y. Physicians down-regulate their pain empathy response: an event-related brain potential study. Neuroimage. 2010;50(4):1676–82.PubMedCrossRefGoogle Scholar
  69. 69.
    Derbyshire SW, Jones AK, Gyulai F, Clark S, Townsend D, Firestone LL. Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain. 1997;73(3):431–45.PubMedCrossRefGoogle Scholar
  70. 70.
    Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. Brain. 1995;118(1):279–306.PubMedCrossRefGoogle Scholar
  71. 71.
    Drwecki BB, Moore CF, Ward SE, Prkachin KM. Reducing racial disparities in pain treatment: the role of empathy and perspective-taking. Pain. 2011;152(5):1001–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Duerden EG, Arsalidou M, Lee M, Taylor MJ. Lateralization of affective processing in the insula. Neuroimage. 2013;78:159–75.PubMedCrossRefGoogle Scholar
  73. 73.
    Ebisch SJ, Ferri F, Salone A, Perrucci MG, D’Amico L, Ferro FM, Romani GL, Gallese V. Differential involvement of somatosensory and interoceptive cortices during the observation of affective touch. J Cogn Neurosci. 2011;23(7):1808–22.PubMedCrossRefGoogle Scholar
  74. 74.
    Eisenberg N, Fabes RA. Empathy: conceptualization, measurement, and relation to prosocial behavior. Motiv Emot. 1990;14(2):131–49.CrossRefGoogle Scholar
  75. 75.
    Eisenberg N, Morris AS. The origins and social significance of empathy-related responding. A review of empathy and moral development: implications for caring and justice by ML Hoffman. Social Justice Res. 2001;14(1):95–120.CrossRefGoogle Scholar
  76. 76.
    Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci. 2011;15(2):85–93.PubMedCrossRefGoogle Scholar
  77. 77.
    Fan Y, Duncan NW, de Greck M, Northoff G. Is there a core neural network in empathy? An fMRI based quantitative meta-analysis. Neurosci Biobehav Rev. 2011;35(3):903–11.PubMedCrossRefGoogle Scholar
  78. 78.
    Fan Y, Han S. Temporal dynamic of neural mechanisms involved in empathy for pain: an event-related brain potential study. Neuropsychologia. 2008;46(1):160–73.PubMedCrossRefGoogle Scholar
  79. 79.
    Farina S, Tinazzi M, Le Pera D, Valeriani M. Pain-related modulation of the human motor cortex. Neurol Res. 2003;25(2):130–42.PubMedCrossRefGoogle Scholar
  80. 80.
    Farrell MJ, Laird AR, Egan GF. Brain activity associated with painfully hot stimuli applied to the upper limb: A meta-analysis. Hum Brain Mapp. 2005;25(1):129–39.PubMedCrossRefGoogle Scholar
  81. 81.
    Gallese V. The roots of empathy: the shared manifold hypothesis and the neural basis of intersubjectivity. Psychopathology. 2003;36(4):171–80.PubMedCrossRefGoogle Scholar
  82. 82.
    Gallese V, Keysers C, Rizzolatti G. A unifying view of the basis of social cognition. Trends cogn Sci. 2004;8(9):396–403.PubMedCrossRefGoogle Scholar
  83. 83.
    Gasquoine PG. Localization of function in anterior cingulate cortex: from psychosurgery to functional neuroimaging. Neurosci Biobehav Rev. 2013;37(3):340–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Gracely RH, Sundgren PC. Neuroimaging of pain. In: Functional neuroradiology. Berlin: Springer; 2012. p. 273–90.Google Scholar
  85. 85.
    Graff-Guerrero A, González-Olvera J, Fresán A, Gómez-Martín D, Méndez-Nuñez JC, Pellicer F. Repetitive transcranial magnetic stimulation of dorsolateral prefrontal cortex increases tolerance to human experimental pain. Cogn Brain Res. 2005;25(1):153–60.CrossRefGoogle Scholar
  86. 86.
    Grill-Spector K, Malach R. fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol (Amst). 2001;107(1):293–321.CrossRefGoogle Scholar
  87. 87.
    Gu X, Gao Z, Wang X, Liu X, Knight RT, Hof PR, Fan J. Anterior insular cortex is necessary for empathetic pain perception. Brain. 2012;135(9):2726–35.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Gu X, Han S. Attention and reality constraints on the neural processes of empathy for pain. Neuroimage. 2007;36(1):256–67.PubMedCrossRefGoogle Scholar
  89. 89.
    Gu X, Liu X, Guise KG, Naidich TP, Hof PR, Fan J. Functional dissociation of the frontoinsular and anterior cingulate cortices in empathy for pain. J Neurosci. 2010;30(10):3739–44.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Han S, Fan Y, Xu X, Qin J, Wu B, Wang X, Aglioti SM, Mao L. Empathic neural responses to others’ pain are modulated by emotional contexts. Hum Brain Mapp. 2009;30(10):3227–37.PubMedCrossRefGoogle Scholar
  91. 91.
    Hein G, Silani G, Preuschoff K, Batson CD, Singer T. Neural responses to ingroup and outgroup members’ suffering predict individual differences in costly helping. Neuron. 2010;68(1):149–60.PubMedCrossRefGoogle Scholar
  92. 92.
    Hutchison WD, Davis K, Lozano A, Tasker R, Dostrovsky J. Pain-related neurons in the human cingulate cortex. Nat Neurosci. 1999;2(5):403–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Iannetti GD, Mouraux A. From the neuromatrix to the pain matrix (and back). Exp Brain Res. 2010;205(1):1–12.PubMedCrossRefGoogle Scholar
  94. 94.
    IASP IAftSoP. Classification of chronic pain. 2 ed. Seattle: IASP Press; 1994.Google Scholar
  95. 95.
    Immordino-Yang MH, McColl A, Damasio H, Damasio A. Neural correlates of admiration and compassion. Proc Natl Acad Sci. 2009;106(19):8021–6.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Isnard J, Magnin M, Jung J, Mauguière F, Garcia-Larrea L. Does the insula tell our brain that we are in pain? Pain. 2011;152(4):946–51.PubMedCrossRefGoogle Scholar
  97. 97.
    Isoda M, Noritake A. What makes the dorsomedial frontal cortex active during reading the mental states of others? Front Neurosci. 2013;7.Google Scholar
  98. 98.
    Jackson PL, Brunet E, Meltzoff AN, Decety J. Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain. Neuropsychologia. 2006;44(5):752–61.PubMedCrossRefGoogle Scholar
  99. 99.
    Jackson PL, Meltzoff AN, Decety J. How do we perceive the pain of others? A window into the neural processes involved in empathy. Neuroimage. 2005;24(3):771–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Jackson PL, Rainville P, Decety J. To what extent do we share the pain of others? Insight from the neural bases of pain empathy. Pain. 2006;125(1):5–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Jastorff J, Begliomini C, Fabbri-Destro M, Rizzolatti G, Orban GA. Coding observed motor acts: different organizational principles in the parietal and premotor cortex of humans. J Neurophysiol. 2010;104(1):128–40.PubMedCrossRefGoogle Scholar
  102. 102.
    Kang P, Lee J, Sul S, Kim H. Dorsomedial prefrontal cortex activity predicts the accuracy in estimating others’ preferences. Front Human Neurosci. 2013;7.Google Scholar
  103. 103.
    Kelly S, Lloyd D, Nurmikko T, Roberts N. Retrieving autobiographical memories of painful events activates the anterior cingulate cortex and inferior frontal gyrus. J Pain. 2007;8(4):307–14.PubMedCrossRefGoogle Scholar
  104. 104.
    Keogh E, Moore DJ, Duggan GB, Payne SJ, Eccleston C. The disruptive effects of pain on complex cognitive performance and executive control. PLoS ONE. 2013;8(12):e83272.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Keysers C, Kaas JH, Gazzola V. Somatosensation in social perception. Nat Rev Neurosci. 2010;11(6):417–28.PubMedCrossRefGoogle Scholar
  106. 106.
    Klimecki OM, Leiberg S, Ricard M, Singer T. Differential pattern of functional brain plasticity after compassion and empathy training. Social Cogn Affect Neurosci. 2013;nst060.Google Scholar
  107. 107.
    Kulkarni B, Bentley D, Elliott R, Youell P, Watson A, Derbyshire S, Frackowiak R, Friston K, Jones A. Attention to pain localization and unpleasantness discriminates the functions of the medial and lateral pain systems. Eur J Neurosci. 2005;21(11):3133–42.PubMedCrossRefGoogle Scholar
  108. 108.
    Lamm C, Batson CD, Decety J. The neural substrate of human empathy: effects of perspective-taking and cognitive appraisal. Cogn Neurosci J. 2007;19(1):42–58.CrossRefGoogle Scholar
  109. 109.
    Lamm C, Decety J. Is the extrastriate body area (EBA) sensitive to the perception of pain in others? Cereb Cortex. 2008;18(10):2369–73.PubMedCrossRefGoogle Scholar
  110. 110.
    Lamm C, Decety J, Singer T. Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage. 2011;54(3):2492–502.PubMedCrossRefGoogle Scholar
  111. 111.
    Lamm C, Majdandžić J. The role of shared neural activations, mirror neurons, and morality in empathy—a critical comment. Neurosci Res. 2015;90:15–24.PubMedCrossRefGoogle Scholar
  112. 112.
    Lamm C, Meltzoff AN, Decety J. How do we empathize with someone who is not like us? A functional magnetic resonance imaging study. J Cogn Neurosci. 2010;22(2):362–76.PubMedCrossRefGoogle Scholar
  113. 113.
    Lamm C, Nusbaum HC, Meltzoff AN, Decety J. What are you feeling? Using functional magnetic resonance imaging to assess the modulation of sensory and affective responses during empathy for pain. PLoS ONE. 2007;2(12):e1292.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Le Pera D, Graven-Nielsen T, Valeriani M, Oliviero A, Di Lazzaro V, Tonali PA, Arendt-Nielsen L. Inhibition of motor system excitability at cortical and spinal level by tonic muscle pain. Clin Neurophysiol. 2001;112(9):1633–41.PubMedCrossRefGoogle Scholar
  115. 115.
    Lefaucheur J, Drouot X, Menard-Lefaucheur I, Keravel Y, Nguyen J. Motor cortex rTMS in chronic neuropathic pain: pain relief is associated with thermal sensory perception improvement. J Neurol Neurosurg Psychiatry. 2008;79(9):1044–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Lombardo MV, Chakrabarti B, Bullmore ET, Sadek SA, Pasco G, Wheelwright SJ, Suckling J, Baron-Cohen S, Consortium MA. Atypical neural self-representation in autism. Brain. 2010;133(2):611–24.Google Scholar
  117. 117.
    Lorenz J, Minoshima S, Casey K. Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain. 2003;126(5):1079–91.PubMedCrossRefGoogle Scholar
  118. 118.
    Lotze M, Montoya P, Erb M, Hülsmann E, Flor H, Klose U, Birbaumer N, Grodd W. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci. 1999;11(5):491–501.PubMedCrossRefGoogle Scholar
  119. 119.
    Mattiassi AD, Mele S, Ticini LF, Urgesi C. Conscious and unconscious representations of observed actions in the human motor system. J Cogn Neurosci. 2014;26(9):2028–41.PubMedCrossRefGoogle Scholar
  120. 120.
    May A. Neuroimaging: visualising the brain in pain. Neurol Sci. 2007;28(2):S101–7.PubMedCrossRefGoogle Scholar
  121. 121.
    May A. New insights into headache: an update on functional and structural imaging findings. Nat Rev Neurol. 2009;5(4):199–209.PubMedCrossRefGoogle Scholar
  122. 122.
    Mazzola L, Isnard J, Mauguiere F. Somatosensory and pain responses to stimulation of the second somatosensory area (SII) in humans. A comparison with SI and insular responses. Cereb Cortex. 2006;16(7):960–8.PubMedCrossRefGoogle Scholar
  123. 123.
    McCormick LM, Brumm MC, Beadle JN, Paradiso S, Yamada T, Andreasen N. Mirror neuron function, psychosis, and empathy in schizophrenia. Psychiatry Res: Neuroimaging. 2012;201(3):233–9.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Mechelli A, Price CJ, Friston KJ, Ishai A. Where bottom-up meets top-down: neuronal interactions during perception and imagery. Cereb Cortex. 2004;14(11):1256–65.PubMedCrossRefGoogle Scholar
  125. 125.
    Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214(5–6):655–67.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Mercier C, Leonard G. Interactions between pain and the motor cortex: insights from research on phantom limb pain and complex regional pain syndrome. Physiother Can. 2011;63(3):305–14.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24(1):167–202.PubMedCrossRefGoogle Scholar
  128. 128.
    Minio-Paluello I, Avenanti A, Aglioti SM. Left hemisphere dominance in reading the sensory qualities of others’ pain? Soc Neurosci. 2006;1(3–4):320–33.PubMedCrossRefGoogle Scholar
  129. 129.
    Minio-Paluello I, Baron-Cohen S, Avenanti A, Walsh V, Aglioti SM. Absence of embodied empathy during pain observation in Asperger syndrome. Biol Psychiatry. 2009;65(1):55–62.PubMedCrossRefGoogle Scholar
  130. 130.
    Molenberghs P, Cunnington R, Mattingley JB. Is the mirror neuron system involved in imitation? A short review and meta-analysis. Neurosci Biobehav Rev. 2009;33(7):975–80.PubMedCrossRefGoogle Scholar
  131. 131.
    Molnar-Szakacs I, Kaplan J, Greenfield PM, Iacoboni M. Observing complex action sequences: the role of the fronto-parietal mirror neuron system. Neuroimage. 2006;33(3):923–35.PubMedCrossRefGoogle Scholar
  132. 132.
    Morelli SA, Lieberman MD. The role of automaticity and attention in neural processes underlying empathy for happiness, sadness, and anxiety. Front Human Neurosci. 2013;7.Google Scholar
  133. 133.
    Moriguchi Y, Decety J, Ohnishi T, Maeda M, Mori T, Nemoto K, Matsuda H, Komaki G. Empathy and judging other’s pain: an fMRI study of alexithymia. Cereb Cortex. 2007;17(9):2223–34.PubMedCrossRefGoogle Scholar
  134. 134.
    Morrison I, Downing PE. Organization of felt and seen pain responses in anterior cingulate cortex. Neuroimage. 2007;37(2):642–51.PubMedCrossRefGoogle Scholar
  135. 135.
    Morrison I, Lloyd D, Di Pellegrino G, Roberts N. Vicarious responses to pain in anterior cingulate cortex: is empathy a multisensory issue? Cogn Affect Behav Neurosci. 2004;4(2):270–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Morrison I, Peelen MV, Downing PE. The sight of others’ pain modulates motor processing in human cingulate cortex. Cereb Cortex. 2007;17(9):2214–22.PubMedCrossRefGoogle Scholar
  137. 137.
    Morrison I, Tipper SP, Fenton-Adams WL, Bach P. “Feeling” Others’ painful actions: the sensorimotor integration of pain and action information. Hum Brain Mapp. 2013;34(8):1982–98.PubMedCrossRefGoogle Scholar
  138. 138.
    Mouraux A, Iannetti GD. Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity. J Neurophysiol. 2009;101(6):3258–69.PubMedCrossRefGoogle Scholar
  139. 139.
    Nachev P, Kennard C, Husain M. Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci. 2008;9(11):856–69.PubMedCrossRefGoogle Scholar
  140. 140.
    Nagasako EM, Oaklander AL, Dworkin RH. Congenital insensitivity to pain: an update. Pain. 2003;101(3):213–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Nakamura K, Kawashima R, Ito K, Sugiura M, Kato T, Nakamura A, Hatano K, Nagumo S, Kubota K, Fukuda H. Activation of the right inferior frontal cortex during assessment of facial emotion. J Neurophysiol. 1999;82(3):1610–4.PubMedGoogle Scholar
  142. 142.
    Norris CJ, Chen EE, Zhu DC, Small SL, Cacioppo JT. The interaction of social and emotional processes in the brain. J Cogn Neurosci. 2004;16(10):1818–29.PubMedCrossRefGoogle Scholar
  143. 143.
    Nummenmaa L, Hirvonen J, Parkkola R, Hietanen JK. Is emotional contagion special? An fMRI study on neural systems for affective and cognitive empathy. Neuroimage. 2008;43(3):571–80.PubMedCrossRefGoogle Scholar
  144. 144.
    Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, Pineda JA. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cogn Brain Res. 2005;24(2):190–8.CrossRefGoogle Scholar
  145. 145.
    Ochsner KN, Ludlow DH, Knierim K, Hanelin J, Ramachandran T, Glover GC, Mackey SC. Neural correlates of individual differences in pain-related fear and anxiety. Pain. 2006;120(1):69–77.PubMedCrossRefGoogle Scholar
  146. 146.
    Ochsner KN, Zaki J, Hanelin J, Ludlow DH, Knierim K, Ramachandran T, Glover GH, Mackey SC. Your pain or mine? Common and distinct neural systems supporting the perception of pain in self and other. Social Cogn Affect Neurosci. 2008;3(2):144–60.CrossRefGoogle Scholar
  147. 147.
    Ogino Y, Nemoto H, Inui K, Saito S, Kakigi R, Goto F. Inner experience of pain: imagination of pain while viewing images showing painful events forms subjective pain representation in human brain. Cereb Cortex. 2007;17(5):1139–46.PubMedCrossRefGoogle Scholar
  148. 148.
    Osborn J, Derbyshire SW. Pain sensation evoked by observing injury in others. Pain. 2010;148(2):268–74.PubMedCrossRefGoogle Scholar
  149. 149.
    Perry A, Bentin S, Bartal IB-A, Lamm C, Decety J. “Feeling” the pain of those who are different from us: modulation of EEG in the mu/alpha range. Cogn Affect Behav Neurosci. 2010;10(4):493–504.PubMedCrossRefGoogle Scholar
  150. 150.
    Peyron R, Garcia-Larrea L, Deiber M, Cinotti L, Convers P, Sindou M, Mauguiere F, Laurent B. Electrical stimulation of precentral cortical area in the treatment of central pain: electrophysiological and PET study. Pain. 1995;62(3):275–86.PubMedCrossRefGoogle Scholar
  151. 151.
    Peyron R, Laurent B, Garcia-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000). Clin Neurophysiol. 2000;30(5):263–88.CrossRefGoogle Scholar
  152. 152.
    Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, Rawlins JNP. Dissociating pain from its anticipation in the human brain. Science. 1999;284(5422):1979–81.PubMedCrossRefGoogle Scholar
  153. 153.
    Ploner M, Schmitz F, Freund H-J, Schnitzler A. Differential organization of touch and pain in human primary somatosensory cortex. J Neurophysiol. 2000;83(3):1770–6.PubMedGoogle Scholar
  154. 154.
    Porro CA, Baraldi P, Pagnoni G, Serafini M, Facchin P, Maieron M, Nichelli P. Does anticipation of pain affect cortical nociceptive systems? J Neurosci. 2002;22(8):3206–14.PubMedGoogle Scholar
  155. 155.
    Preston SD. A perception-action model for empathy. Empathy Mental Illness 2007;428–47.Google Scholar
  156. 156.
    Preston SD, De Waal F. Empathy: its ultimate and proximate bases. Behav Brain Sci. 2002;25(01):1–20.PubMedGoogle Scholar
  157. 157.
    Preston SD, Hofelich AJ. The many faces of empathy: parsing empathic phenomena through a proximate, dynamic-systems view of representing the other in the self. Emot Rev. 2012;4(1):24–33.CrossRefGoogle Scholar
  158. 158.
    Rizzolatti G, Craighero L. The mirror-neuron system. Annu Rev Neurosci. 2004;27:169–92.PubMedCrossRefGoogle Scholar
  159. 159.
    Rizzolatti G, Fadiga L, Gallese V, Fogassi L. Premotor cortex and the recognition of motor actions. Cogn Brain Res. 1996;3(2):131–41.CrossRefGoogle Scholar
  160. 160.
    Rizzolatti G, Fogassi L, Gallese V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci. 2001;2(9):661–70.PubMedCrossRefGoogle Scholar
  161. 161.
    Roldan-Gerschcovich E, Cerquetti D, Tenca E, Leiguarda R. The impact of bilateral cerebellar damage on theory of mind, empathy and decision making. Neurocase. 2011;17(3):270–5.PubMedCrossRefGoogle Scholar
  162. 162.
    Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Group SoTC. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008–39.Google Scholar
  163. 163.
    Saarela MV, Hlushchuk Y, Williams ACdC, Schürmann M, Kalso E, Hari R. The compassionate brain: humans detect intensity of pain from another’s face. Cereb Cortex. 2007;17(1):230–7.PubMedCrossRefGoogle Scholar
  164. 164.
    Sawamoto N, Honda M, Okada T, Hanakawa T, Kanda M, Fukuyama H, Konishi J, Shibasaki H. Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic resonance imaging study. The Journal of Neuroscience. 2000;20(19):7438–45.PubMedGoogle Scholar
  165. 165.
    Schaefer M, Xu B, Flor H, Cohen LG. Effects of different viewing perspectives on somatosensory activations during observation of touch. Hum Brain Mapp. 2009;30(9):2722–30.PubMedCrossRefGoogle Scholar
  166. 166.
    Schienle A, Stark R, Walter B, Blecker C, Ott U, Kirsch P, Sammer G, Vaitl D. The insula is not specifically involved in disgust processing: an fMRI study. NeuroReport. 2002;13(16):2023–6.PubMedCrossRefGoogle Scholar
  167. 167.
    Schneider D, Regenbogen C, Kellermann T, Finkelmeyer A, Kohn N, Derntl B, Schneider F, Habel U. Empathic behavioral and physiological responses to dynamic stimuli in depression. Psychiatry Res. 2012;200(2):294–305.PubMedCrossRefGoogle Scholar
  168. 168.
    Schreckenberger M, Siessmeier T, Viertmann A, Landvogt C, Buchholz H-G, Rolke R, Treede R-D, Bartenstein P, Birklein F. The unpleasantness of tonic pain is encoded by the insular cortex. Neurology. 2005;64(7):1175–83.PubMedCrossRefGoogle Scholar
  169. 169.
    Seitz RJ, Nickel J, Azari NP. Functional modularity of the medial prefrontal cortex: involvement in human empathy. Neuropsychology. 2006;20(6):743–51. doi: 10.1037/0894-4105.20.6.743.PubMedCrossRefGoogle Scholar
  170. 170.
    Seminowicz DA, Davis KD. Pain enhances functional connectivity of a brain. J Neurophysiol. 2007;97:3651–9.PubMedCrossRefGoogle Scholar
  171. 171.
    Shamay-Tsoory SG. The neural bases for empathy. Neuroscientist. 2011;17(1):18–24.PubMedCrossRefGoogle Scholar
  172. 172.
    Shamay-Tsoory SG, Shur S, Harari H, Levkovitz Y. Neurocognitive basis of impaired empathy in schizophrenia. Neuropsychology. 2007;21(4):431.PubMedCrossRefGoogle Scholar
  173. 173.
    Shima K, Tanji J. Both supplementary and presupplementary motor areas are crucial for the temporal organization of multiple movements. J Neurophysiol. 1998;80(6):3247–60.PubMedGoogle Scholar
  174. 174.
    Simmons A, Matthews SC, Stein MB, Paulus MP. Anticipation of emotionally aversive visual stimuli activates right insula. NeuroReport. 2004;15(14):2261–5.PubMedCrossRefGoogle Scholar
  175. 175.
    Simmons W, Avery JA, Barcalow JC, Bodurka J, Drevets WC, Bellgowan P. Keeping the body in mind: insula functional organization and functional connectivity integrate interoceptive, exteroceptive, and emotional awareness. Hum Brain Mapp. 2013;34(11):2944–58.PubMedCrossRefGoogle Scholar
  176. 176.
    Simon D, Craig KD, Miltner WH, Rainville P. Brain responses to dynamic facial expressions of pain. Pain. 2006;126(1):309–18.PubMedCrossRefGoogle Scholar
  177. 177.
    Singer T, Critchley HD, Preuschoff K. A common role of insula in feelings, empathy and uncertainty. Trends in cognitive sciences. 2009;13(8):334–40.PubMedCrossRefGoogle Scholar
  178. 178.
    Singer T, Lamm C. The social neuroscience of empathy. Ann N Y Acad Sci. 2009;1156(1):81–96.PubMedCrossRefGoogle Scholar
  179. 179.
    Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD. Empathy for pain involves the affective but not sensory components of pain. Science. 2004;303(5661):1157–62.PubMedCrossRefGoogle Scholar
  180. 180.
    Singer T, Seymour B, O’Doherty JP, Stephan KE, Dolan RJ, Frith CD. Empathic neural responses are modulated by the perceived fairness of others. Nature. 2006;439(7075):466–9.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Sterzer P, Stadler C, Poustka F, Kleinschmidt A. A structural neural deficit in adolescents with conduct disorder and its association with lack of empathy. Neuroimage. 2007;37(1):335–42.PubMedCrossRefGoogle Scholar
  182. 182.
    Swick D, Ashley V, Turken U. Left inferior frontal gyrus is critical for response inhibition. BMC Neurosci. 2008;9(1):102.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Teplan M. Fundamentals of EEG measurement. Measure Sci Rev. 2002;2(2):1–11.Google Scholar
  184. 184.
    Timmermann L, Ploner M, Haucke K, Schmitz F, Baltissen R, Schnitzler A. Differential coding of pain intensity in the human primary and secondary somatosensory cortex. J Neurophysiol. 2001;86(3):1499–503.PubMedGoogle Scholar
  185. 185.
    Tracey I. Imaging pain. Br J Anaesth. 2008;101(1):32–9.PubMedCrossRefGoogle Scholar
  186. 186.
    Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron. 2007;55(3):377–91.PubMedCrossRefGoogle Scholar
  187. 187.
    Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S. Chronic motor cortex stimulation for the treatment of central pain. In: Advances in stereotactic and functional neurosurgery 9. Berlin: Springer; 1991. p. 137–9.Google Scholar
  188. 188.
    Uddin LQ, Molnar-Szakacs I, Zaidel E, Iacoboni M. rTMS to the right inferior parietal lobule disrupts self–other discrimination. Social Cogn Affect Neurosci. 2006;1(1):65–71.CrossRefGoogle Scholar
  189. 189.
    Uekermann J, Kraemer M, Abdel-Hamid M, Schimmelmann B, Hebebrand J, Daum I, Wiltfang J, Kis B. Social cognition in attention-deficit hyperactivity disorder (ADHD). Neurosci Biobehav Rev. 2010;34(5):734–43.PubMedCrossRefGoogle Scholar
  190. 190.
    Urban P, Solinski M, Best C, Rolke R, Hopf H, Dieterich M. Different short-term modulation of cortical motor output to distal and proximal upper-limb muscles during painful sensory nerve stimulation. Muscle Nerve. 2004;29(5):663–9.PubMedCrossRefGoogle Scholar
  191. 191.
    Vachon-Presseau E, Martel MO, Roy M, Caron E, Jackson PL, Rainville P. The multilevel organization of vicarious pain responses: effects of pain cues and empathy traits on spinal nociception and acute pain. Pain. 2011;152(7):1525–31.PubMedCrossRefGoogle Scholar
  192. 192.
    Vachon-Presseau E, Roy M, Martel M-O, Albouy G, Sullivan MJ, Jackson PL, Rainville P. The two sides of pain communication: effects of pain expressiveness on vicarious brain responses revealed in chronic back pain patients. J Pain. 2013;14(11):1407–15.PubMedCrossRefGoogle Scholar
  193. 193.
    Vachon-Presseau E, Roy M, Martel M, Albouy G, Chen J, Budell L, Sullivan M, Jackson P, Rainville P. Neural processing of sensory and emotional-communicative information associated with the perception of vicarious pain. Neuroimage. 2012;63(1):54–62.PubMedCrossRefGoogle Scholar
  194. 194.
    Valeriani M, Betti V, Le Pera D, De Armas L, Miliucci R, Restuccia D, Avenanti A, Aglioti SM. Seeing the pain of others while being in pain: a laser-evoked potentials study. Neuroimage. 2008;40(3):1419–28.PubMedCrossRefGoogle Scholar
  195. 195.
    Valet M, Sprenger T, Boecker H, Willoch F, Rummeny E, Conrad B, Erhard P, Tolle TR. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain—an fMRI analysis. Pain. 2004;109(3):399–408.PubMedCrossRefGoogle Scholar
  196. 196.
    Van der Gaag C, Minderaa RB, Keysers C. Facial expressions: what the mirror neuron system can and cannot tell us. Soc Neurosci. 2007;2(3–4):179–222.PubMedCrossRefGoogle Scholar
  197. 197.
    van Veluw SJ, Chance SA. Differentiating between self and others: an ALE meta-analysis of fMRI studies of self-recognition and theory of mind. Brain Imaging Behav. 2014;8(1):24–38.PubMedCrossRefGoogle Scholar
  198. 198.
    Wager TD, Atlas LY, Lindquist MA, Roy M, Woo C-W, Kross E. An fMRI-based neurologic signature of physical pain. N Engl J Med. 2013;368(15):1388–97.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Wicker B, Keysers C, Plailly J, Royet J-P, Gallese V, Rizzolatti G. Both of us disgusted in < i > My </i > insula: the common neural basis of seeing and feeling disgust. Neuron. 2003;40(3):655–64.PubMedCrossRefGoogle Scholar
  200. 200.
    Wilson M, Knoblich G. The case for motor involvement in perceiving conspecifics. Psychol Bull. 2005;131(3):460.PubMedCrossRefGoogle Scholar
  201. 201.
    Xue G, Lu Z, Levin IP, Weller JA, Li X, Bechara A. Functional dissociations of risk and reward processing in the medial prefrontal cortex. Cereb Cortex. 2009;19(5):1019–27. doi: 10.1093/cercor/bhn147.PubMedCrossRefGoogle Scholar
  202. 202.
    Yesudas EH, Lee T. The role of cingulate cortex in vicarious pain. BioMed Res Int. 2015.Google Scholar
  203. 203.
    Zaki J, Davis JI, Ochsner KN. Overlapping activity in anterior insula during interoception and emotional experience. Neuroimage. 2012;62(1):493–9.PubMedCrossRefGoogle Scholar
  204. 204.
    Zaki J, Ochsner KN. The neuroscience of empathy: progress, pitfalls and promise. Nat Neurosci. 2012;15(5):675–80.PubMedCrossRefGoogle Scholar
  205. 205.
    Zaki J, Ochsner KN, Hanelin J, Wager TD, Mackey SC. Different circuits for different pain: patterns of functional connectivity reveal distinct networks for processing pain in self and others. Soc Neurosci. 2007;2(3–4):276–91.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratory of NeuropsychologyThe University of Hong KongPok Fu LamHong Kong SAR
  2. 2.Laboratory of Social Cognitive Affective NeuroscienceThe University of Hong KongPok Fu LamHong Kong SAR
  3. 3.The State Key Laboratory of Brain and Cognitive SciencesThe University of Hong KongPok Fu LamHong Kong SAR
  4. 4.Institute of Clinical NeuropsychologyThe University of Hong KongPok Fu LamHong Kong SAR

Personalised recommendations