Advertisement

Microbial Inoculants for Soil Quality and Plant Health

  • Elizabeth T. Alori
  • Michael O. Dare
  • Olubukola O. BabalolaEmail author
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 22)

Abstract

Agriculture is the major economic activity of most developing countries engaging more than 50 % of the population. Low world crop productivity due to low soil moisture, low nutrient capital, erosion risk, low pH, high phosphorus fixation, low levels of soil organic matter, aluminum toxicity pest and diseases, weeds and loss of soil biodiversity has induced the green revolution agriculture which involves high yielding varieties and agrochemicals. The continuous use of fertilizers, pesticides and herbicides has led to low agricultural productivity, low soil fertility, unfavourable economic returns, food poisoning, soil damage loss of biodiversity and serious environmental hazards. Microbial inoculants possess the capacity to enhance nutrient availability, uptake, and support the health of soil and plants to promote sustainable yield and has therefore gained attention of many agriculturist and researchers.

We review the ability of soil through the use of microbial inoculants to supply nitrogen, phosphorus and potassium to crop plants and enhance structural stability. Microbial inoculants such as rhizobium, plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi can be used as biofertilzer to improve soil nitrogen, phosphorus and potassium availability and uptake. Both bacteria and fungi inoculants show potential for use in soil aggregate formation and stabilization and hence, soil structure enhancement. The ability of microbial inoculants to ameliorate plant stress as a result of drought, soil contamination and salinity are also highlighted. The most commonly used microorganisms as biofertilizers, biocontrol and bioremediators include Bacillus spp, Pseudomonas spp, Streptomyces spp Trichoderma spp and Mycorrhizas. Microbial inoculants function through various mechanisms such as production of plant hormones, expansion and elongation of the root system, eliciting induced systemic resistance or systemic acquired resistance, production of lytic enzyme and antibiotic 4-hydroxyphenylactic acid, and production of 1-aminocyclopropane-1-carboxylate-deaminase (ACC-deaminase) in plants rhizosphere. These strategies are safe and sustainable in the long run. The use of appropriate carrier material determines the success of microbial inoculation techniques. Microbial inoculants could either be applied directly to the soil or as seed dressing. The fate of microbial inoculants under field application depends largely on both biotic and abiotic factors. The application of some microbial inoculants could cause a change (which could be a decrease or an increase) in the equilibrium of soil microbial communities while some produce no effect at all.

Keywords

Agricultural sustainability Biocontrol Biofertilizer Bioremediation Biotechnology Food security Microbial inoculants Plant growth Plant growth promoting microorganisms (PGPM) Soil fertility and health 

Notes

Acknowledgements

North-West University is gratefully acknowledged for ETA and MOD postdoctoral supports. OOB would like to thank the National Research Foundation, South Africa for grant (Ref: UID81192) that have supported research in her laboratory.

References

  1. Abhilash PC, Srivastava S, Srivastava P, Singh B, Jafri A, Singh N (2011) Influence of rhizospheric microbial inoculation and tolerant plant species on the rhizoremediation of lindane. Environ Exp Bot 74:127–130. doi: 10.1016/j.envexpbot.2011.05.009 CrossRefGoogle Scholar
  2. Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A (2011) Soil type affects plant colonization, and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater 186:1568–1575. doi: 10.1016/j.jhazmat.2010.12.040 PubMedCrossRefGoogle Scholar
  3. Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytoremediation 14:35–47. doi: 10.1080/15226514.2011.552928 PubMedCrossRefGoogle Scholar
  4. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20. doi: 10.1016/j.jksus.2013.05.001 CrossRefGoogle Scholar
  5. Akhtar MS, Shakeel U, Siddiqui ZA (2010) Biocontrol of Fusarium wilt by Bacillus pumilus. Pseudomonas alcaligenes, and Rhizobium sp. on lentil. Turk J Biology 34:1–7. doi: 10.3906/biy-0809-12 Google Scholar
  6. Akladious SA, Abbas SA (2012) Application of Trichoderma harziunum T22 as a biofertilizer supporting maize growth. Afr J Biotechnol 11(35):8672–8683. doi: 10.5897/AJB11.4323 Google Scholar
  7. Alori ET (2015) Phytoremediation using microbial commmunity II. In: Ansari AA, Gill SS, Newman L, Lanza GR (eds) Phytoremediation: management of environmental contaminants, vol II. Springer Publications, New York, pp. 183–190. doi: 10.1007/978-3-319-10969-5_15 Google Scholar
  8. Alori E, Fawole O (2012) Phytoremediation of soils contaminated with aluminium and manganese by two arbuscular mycorrhizal fungi. J Agric Sci 4(8):246–252. doi: 10.5539/jas.v4n8p246 Google Scholar
  9. Ansari MF, Tipre DR, Dave SR (2014) Efficiency evaluation of commercial liquid biofertilizers for growth of Cicer aeritinum (chickpea) in pot and field study. Biocatal Agric Biotechnol 4(1):17–24. doi: 10.1016/j.bcab.2014.09.010 Google Scholar
  10. Armada E, Portela G, Roldán A, Azcóna R (2014) Combined use of beneficial soil microorganism and agrowaste residue to cope with plant water limitation under semiarid conditions. Geoderma 232–234:640–648. doi: 10.1016/j.geoderma.2014.06.025 CrossRefGoogle Scholar
  11. Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570. doi: 10.1007/s10529-010-0347-0 PubMedCrossRefGoogle Scholar
  12. Babalola OO (2014) Does nature make provision for backups in the modification of bacterial community structures? Biotechnol Genet Eng Rev 30(1):31–48. doi: 10.1080/02648725.2014.921497 PubMedCrossRefGoogle Scholar
  13. Babalola OO, Glick BR (2012) Indigenous African agriculture and plant associated microbes: current practice and future transgenic prospects. Sci Res Essays 7(28):2431–2439. doi: 10.5897/SRE11.1714 Google Scholar
  14. Babalola OO, Sanni AI, Odhiambo GD, Torto B (2007) Plant growth-promoting rhizobacteria do not pose any deleterious effect on cowpea and detectable amounts of ethylene are produced. World J Microbiol Biotechnol 23(6):747–752. doi: 10.1007/s11274-006-9290-6 CrossRefGoogle Scholar
  15. Barac T, Weyens N, Oeyen L, Taghavi S, van der Lelie D, Dubin D, Spliet M, Vangronveld J (2009) Field note: hydraulic containment of BTEX plume using poplar trees. Int J Phytoremediation 11:416–424. doi: 10.1080/15226510802655880 PubMedCrossRefGoogle Scholar
  16. Bargaz A, Faghire M, Abdi N, Farissi M, Sifi B, Drevon J-J, Ikbal MC, Ghoulam C (2012) Low soil phosphorus availability increases acid phosphatases activities and affects P partitioning in nodules, Seeds and Rhizosphere of Phaseolus vulgaris. Agriculture 2:139–153. doi: 10.3390/agriculture2020139 CrossRefGoogle Scholar
  17. Becerra-Castro C, Prieto-Fernández Á, Kidd P, Weyens N, Rodríguez-Garrido B, Touceda-González M, Acea MJ, Vangronsveld J (2013) Improving performance of Cytisus striatus on substrates contaminated with hexachlorocyclohexane (HCH) isomers using bacterial inoculants: developing a phytoremediation strategy. Plant Soil 362:247–260. doi: 10.1007/s11104-012-1276-6 CrossRefGoogle Scholar
  18. Bell CW, Acosta-Martinez V, Mcintyre NE, Cox S, Tissue DT, Zak JC (2009) Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland. Microb Ecol 58:827–842. doi: 10.1007/s00248-009-9529-5 PubMedCrossRefGoogle Scholar
  19. Bernhard A (2010) The nitrogen cycle: processes, players, and human impact. Nat Educ Knowl 3(10):25Google Scholar
  20. Bossuyt H, Denef K, Six J, Frey SD, Merckx R, Paustian K (2001) Influence of microbial populations and residue quality on aggregate stability. Appl Soil Ecol 16:195–208. doi: 10.1016/S0929-1393(00)00116-5 CrossRefGoogle Scholar
  21. Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383(1-2):3–41. doi: 10.1007/s11104-014-2131-8 CrossRefGoogle Scholar
  22. Cao Y, Ling N, Yang XM, Chen LH, Shen QR (2011) Bacillus subtilis SQR9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils 47:495–506. doi: 10.1007/s00374-011-0556-2 CrossRefGoogle Scholar
  23. Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84. doi: 10.1016/j.agee.2006.03.011 CrossRefGoogle Scholar
  24. Carvajal-Muñoz JS, Carmona-Garcia CE (2012) Benefits and limitations of biofertilization in agricultural practices. Livest Res Rural Dev 24(3)Google Scholar
  25. Cavaglieri L, Orlando J, Rodriguez MI, Chulze S, Etcheverry M (2005) Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro at the maize root level. Res Microbiol 156:748–754. doi: 10.1016/j.resmic.2005.03.001 PubMedCrossRefGoogle Scholar
  26. Chatzipavlidis I, Kefalogianni I, Venieraki A, Holzapfel W (2013) Status and trends of the conservation and sustainable use of microorganisms in agroindustrial processes. Food and Agricultural Organization (FAO) United Nations, United NationsGoogle Scholar
  27. Conn VM, Franco CMM (2004) Effect of Microbial inoculants on the indigenous Actinobacterial Endophyte Population in the Roots of Wheat as Determined by Terminal Restriction Fragment Length Polymorphism. Appl Environ Microbiol 70(11):6407–6413. doi: 10.1128/AEM.70.11.6407-6413.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cozzolino V, Di Meo V, Piccolo A (2013) Impact of arbuscular mycorrhizal fungi application on maize production and soil phosphorus availability. J Geochem Explor 129:40–44. doi: 10.1016/j.gexplo.2013.02.006 CrossRefGoogle Scholar
  29. Dare MO, Abaidoo RC, Fagbola O, Asiedu R (2010) Effects of arbuscular mycorrhizal inoculation and phosphorus application on yield and nutrient uptake of yam. Commun Soil Sci Plant 41:2729–2743. doi: 10.1080/00103624,2010,518264 CrossRefGoogle Scholar
  30. Davinic M, Moore-Kucera J, Acosta-Martínez V, Zak J, Allen V (2013) Soil fungal distribution and functionality as affected by grazing and vegetation components of integrated crop–livestock agroecosystems. Appl Soil Ecol 66:61–70. doi: 10.1016/j.apsoil.2013.01.013 CrossRefGoogle Scholar
  31. Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327. doi: 10.1111/j.1574-6941.2010.00860.x PubMedCrossRefGoogle Scholar
  32. Demoz BT, Korsten L (2006) Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens. Biol Control 37:68–74. doi: 10.1016/J.Biocontrol.2005.11.010 CrossRefGoogle Scholar
  33. Dhanasekaran D, Sivamani P, Panneerselvam A, Thajuddin N, Rajakumar G, Selva-mani S (2005) Biological control of tomato seedling damping off with Streptomyces sp. Plant Pathol J 4:91–95CrossRefGoogle Scholar
  34. Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 321:682–1694. doi: 10.1111/j.1365-3040.2009.02028.x Google Scholar
  35. Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189. doi: 10.1016/j.apsoil.2007.02.005 CrossRefGoogle Scholar
  36. El-Tarabily KA, Nasser AH, Hardy GE, Sivaithamparam K (2008) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26. doi: 10.1111/j.1365-2672.2008.03926.x PubMedCrossRefGoogle Scholar
  37. Erdoğan O, Benlioğlu K (2010) Biological control of Verticillium wilt on cotton by the use of fluorescent Pseudomonas spp. under field conditions. BioControl 53:39–45. doi: 10.1016/J.Biocontrol.2009.11.011 Google Scholar
  38. Errakhi R, Bouton F, Lebrihi A, Barakate M (2007) Evidence of biological control capacities of Streptomyces spp. against Sclerotium rolfsii responsible for damping-off disease in sugar beet (Beta vulgaris L.). World J Microbiol Biotechnol 23:1503–1509CrossRefGoogle Scholar
  39. Ferreira EM, Castro IV (2005) Residues of the cork industry as carriers for the production of legumes inoculants. Silva Lusitana 13(2):159–167Google Scholar
  40. Gaind S (2011) Microbial inoculants: an approach to sustainable agriculture. Biotech ArticleGoogle Scholar
  41. Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56:403–407. doi: 10.1007/s00284-008-9099-7 PubMedCrossRefGoogle Scholar
  42. Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234. doi: 10.1111/j.1574-6968.2009.01637.x PubMedCrossRefGoogle Scholar
  43. Getha K, Vikineswary S, Wong WH, Seki T, Ward A, Goodfellow M (2005) Evaluation of Streptomyces sp. strain g10 for suppression of Fusarium wilt, rhizosphere colonization in pot-grown banana plantlet. J Ind Microbiol Biotechnol 32:24–32. doi: 10.1007/s10295-004-0199-5 PubMedCrossRefGoogle Scholar
  44. Golubev S, Schelud’ko A, Muratova A, Makarov O, Turkovskaya O (2009) Assessing the potential of rhizobacteria to survive under phenanthrene pollution. Water Air Soil Pollut 198:5–16. doi: 10.1007/s11270-008-9821-x
  45. Goudjal Y, Toumatia O, Yekkour A, Sabaou N, Mathieu F, Zitouni A (2014) Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiol Res 169:59–65. doi: 10.1016/j.micres.2013.06.014 PubMedCrossRefGoogle Scholar
  46. Halpern M, Bar-Tal A, Ofek M, Minz D, Muller T, Yermiyahu U (2015) The use of biostimulants for enhancing nutrient uptake. In: LS D (ed) Advances in Agronomy, vol 130. Academic Press, pp. 141–174. doi: 10.1016/bs.agron.2014.10.001
  47. Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008) Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions. Appl Soil Ecol 40:510–517. doi: 10.1016/j.apsoil.2008.08.001 CrossRefGoogle Scholar
  48. Helliwell JR, Miller AJ, Whalley WR, Mooney SJ, Sturrock CJ (2014) Quantifying the impact of microbes on structural development and behaviour in wet soil. Soil Biol Biochem 74:138–147. doi:10.1016/j.soilbio.2014.03.009Google Scholar
  49. Herschkovitz Y, Lerner A, Davidov Y, Okon Y, Jurkevitch E (2005) Azospirillum brasilense does not affect population structure of specific rhizobacterial communities of inoculated maize (Zea mays). Environ Microbiol 7(11):1847–1852. doi: 10.1111/j.1462-2920.2005.00926.x PubMedCrossRefGoogle Scholar
  50. Hmaeid N, Metoui O, Wali M, Zorrig W, Abdelly C (2014) Comparative effects of Rhizobacteria in promoting growth of Hordeum maritimum L. plants under salt stress. J Plant Biol Res 3(1):37–50Google Scholar
  51. Ho Y-N, Mathew DC, Hsiaoa S-C, Chun-Hao Shiha C-H, Chienb M-F, Chiang H-M, Huang C-C (2012) Selection and application of endophytic bacterium Achromobacter xylosoxidans strain F3B for improving phytoremediation of phenolic pollutants. J Hazard Mater. doi: 10.1016/j.jhazmat.2012.03.035 PubMedGoogle Scholar
  52. Hodge A, Storer K (2015) Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 383(1-2):1–19. doi: 10.1007/s11104-014-2162-1 CrossRefGoogle Scholar
  53. Hong S, Kim D, Baek S, Kwon S, Samson RA (2011) Taxonomy of Eurotium species isolated from meju. J Microbiol 49:669–674. doi: 10.1007/s12275-011-0376-y PubMedCrossRefGoogle Scholar
  54. Huang X, Zhang N, Yong X, Yang X, Shen Q (2012) Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiol Res 167:135–143. doi: 10.1016/J.Micres.2011.06.002 PubMedCrossRefGoogle Scholar
  55. Hungaria M, Loureiro MF, Mendes IC, Campo RJ, Graham PH (2005) Inoculant preparation, production and application. In: Werner D, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology and environment, vol 4. Springer, Netherlands, pp. 223–253. doi: 10.1007/1-4020-3544-6_11 CrossRefGoogle Scholar
  56. Jenkinson DA (2001) The impact of human on the nitrogen cycle with focus on temperate arable agriculture. Plant Soil 228:3–15. doi: 10.1023/A:1004870606003 CrossRefGoogle Scholar
  57. Jeong S, Moon HS, Shin D, Nam K (2013) Survival of introduced phosphate-solubilizing bacteria (PSB) and their impact on microbial community structure during the phytoextraction of Cd-contaminated soil. J Hazard Mater 263(2):441–449. doi: 10.1016/j.jhazmat.2013.09.062 PubMedCrossRefGoogle Scholar
  58. Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802. doi: 10.1007/s11738-010-0604-9 CrossRefGoogle Scholar
  59. Julia WG, Peter H, Elizabeth L, Glen H (2013) Soil inoculants. University of Georgia College of Agricultural and Environmental Sciences, Cooperative Extension 10 pagesGoogle Scholar
  60. Karthikeyan B, Joe MM, Islam MR, Sa T (2012) ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 56:77–86. doi: 10.1007/s13199-012-0162-6 CrossRefGoogle Scholar
  61. Kavino M, Harish S, Kumar N, Saravanakumar D, Samiyappan R (2010) Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (musa spp.) under field conditions. Appl Soil Ecol 45:71–77. doi: 10.1016/j.apsoil.2010.02.003 CrossRefGoogle Scholar
  62. Korade DL, Fulekar MH (2009) Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass. J Hazard Mater 172:1344–1350. doi: 10.1016/J.Jhazmat.2009.08.002 PubMedCrossRefGoogle Scholar
  63. Kruger M, Kruger C, Walker C, Stockinger H, Schubler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984. doi: 10.1111/j.1469-8137.2011.03962.x PubMedCrossRefGoogle Scholar
  64. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15. doi: 10.1094/MPMI.2004.17.1.6 PubMedCrossRefGoogle Scholar
  65. Kumar B, Trivedi P, Pandey A (2007) Pseudomonas corrugata: a suitable bacterial inoculant for maize grown under rainfed conditions of Himalayan region. Soil Biol Biochem 39(12):3093–3100. doi: 10.1016/j.soilbio.2007.07.003 CrossRefGoogle Scholar
  66. Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant Soil 374:523–537. doi: 10.1007/s11104-013-1899-2 CrossRefGoogle Scholar
  67. Li Y, Zou YN, Wu QS (2013) Effects of inoculantion with Diversispora spurca on growth, root system architecture and chlorophyll contents of four citrus genotype plants. Int J Agric Biol 15:342–346Google Scholar
  68. Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29(5):413–421. doi: 10.1080/01490451.2011.576602 CrossRefGoogle Scholar
  69. Lucas ST, D’Angelo EM, Williams MA (2013) Improving soil structure by promoting fungal abundance with organic soil amendments. Appl Soil Ecol 75:13–23. doi: 10.1016/j.apsoil.2013.10.002 CrossRefGoogle Scholar
  70. Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90:831–837. doi: 10.1016/j.jvman.2008.01.014 CrossRefGoogle Scholar
  71. Mokone PH, Babalola OO (2013) Evaluation of plant growth promoting potential of four rhizobacterial species for indigenous system. J Cent South Univ 20:164–171. doi: 10.1007/s11771-013-1472-4 CrossRefGoogle Scholar
  72. Medina A, Roldán A, Azcón R (2010) The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil. J Environ Manag 91:2547–2553. doi: 10.1016/j.jenvman.2010.07.008 CrossRefGoogle Scholar
  73. Meena VS, Maurya BR, Verma JP (2014) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169 (5–6):337–347. doi:http://dx.doi.org/10.1016/j.micres.2013.09.003
  74. Mohammadi K, Khalesro S, Sohrabi Y, Heidari G (2011) A review: beneficial effects of the mycorrhizal fungi for plant growth. J Appl Environ Biol Sci 1(9):310–319Google Scholar
  75. Moutia J-FY, Saumtally S, Spaepen S, Vanderleyden J (2010) Plant growth pro-motion by Azospirillum sp. in sugarcane is influenced by genotype and droughtstress. Plant Soil 337:233–242. doi: 10.1007/s11104-010-0519-7 CrossRefGoogle Scholar
  76. Muratova AY, Turkovskaya OV, Antonyuk LP, Makarov OE, Pozdnyakova LI, Ignatov V (2005) Oil-oxidizing potential of associative rhizobacteria of the genus Azospirillum. Microbiology 74:210–215CrossRefGoogle Scholar
  77. Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitscha A (2014) Increased drought stress resilience of maize through endophyticcolonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39. doi: 10.1016/j.envexpbot.2013.09.014 CrossRefGoogle Scholar
  78. N’Cho CO, Yusuf AA, Ama–Abina JT, Jemo M, Abaidoo RC, Savane I (2013) Effects of commercial microbial inoculants and foliar fertilizers on soybean nodulation and yield in northern Guinea savannah of Nigeria. Int J Adv Agric Res 1:66–73Google Scholar
  79. Negi PS, Chauhan AS, Sadia GA, Rohinishree YS, Ramteke RS (2005) Antioxidant and antibacterial activities of various seabuckthorn (hippophae rhamnoides l.) seed extracts. Food Chem 92:119–124. doi: 10.1016/j.foodchem.2004.07.009 CrossRefGoogle Scholar
  80. Nivedhitha VR, Shwetha B, Deepa DD, Manojkumar NH, Raghavendra RB (2008) Plant growth promoting microorganisms (PGPMs) from bamboo rhizosphere. Adv Biotechnol:33–35Google Scholar
  81. Oláh B, Brière C, Bécard G, Dénarié J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207PubMedCrossRefGoogle Scholar
  82. Oliveira T, Mucha AP, Reis I, Rodrigues P, Gomes CR, Almeida CMR (2014) Copper phytoremediation by a salt marsh plant (Phragmites australis) enhanced by autochthonous bioaugmentation. Mar Pollut Bull 88:231–238. doi: 10.1016/j.marpolbul.2014.08.038 PubMedCrossRefGoogle Scholar
  83. Ortiz N, Armada E, Duque E, Roldán A, Azcón R (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: Effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96. doi: 10.1016/j.jplph.2014.08.019 PubMedCrossRefGoogle Scholar
  84. Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Appl Soil Ecol 86:41–54. doi: 10.1016/j.apsoil.2014.09.012 CrossRefGoogle Scholar
  85. Panwar BS, Kádár I, Bíró B, Rajkai-végh K, Ragályi P, Rékási M, Márton L (2011) Phytoremediation: Enhanced cadmium (Cd) accumulation by organic manuring, Edta and microbial inoculants (Azotobacter sp., Pseudomonas sp.) in Indian mustard Brassica juncea L). Act Agron Hung 59(2):117–123. doi: 10.1556/AAgr.59.2011.2.2 CrossRefGoogle Scholar
  86. Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3(1):25–31. doi: 10.5923/j.microbiology.20130301.04 Google Scholar
  87. Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1359. doi: 10.1128/AEM.71.12.8500-8505.2005 CrossRefGoogle Scholar
  88. Paul D, Nair S (2008) Stress adaptations in a plant growth promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:1–7. doi: 10.1002/jobm.200700365 CrossRefGoogle Scholar
  89. Pereg L, McMillan M (2015) Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems. Soil Biol Biochem 80:349–358. doi: 10.1016/J.Soilbio.2014.10.020 CrossRefGoogle Scholar
  90. Probanza A, García JAL, Palomino MR, Ramos B, Mañero FJG (2002) Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Appl Soil Ecol 20:75–84. doi: 10.1016/S0929-1393(02)00007-0 CrossRefGoogle Scholar
  91. Rawat AK, Rao DLN, Sahu RK (2013) Effect of soybean inoculation with Bradyrhizobium and wheat inoculation with Azotobacter on their productivity and N turnover in a vertisol. Arch Agron Soil Sci 59(11):1559–1571. doi: 10.1080/03650340.2012.740555 CrossRefGoogle Scholar
  92. Reed MLE, Warner BG, Glick BR (2005) Plant growth-promoting bacteria facilitate the growth of the common reed Phragmites australis in the presence of copper or polycyclic aromatic hydrocarbons. Curr Microbiol 51(6):425–429. doi: 10.1007/s00284-005-4584-8 PubMedCrossRefGoogle Scholar
  93. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53. doi: 10.1111/j.1469-8137.2006.01750.x PubMedCrossRefGoogle Scholar
  94. Sadeghi A, Hessan AR, Askari H, Aghighi S, Shahidi BGH (2006) Biological control potential of two Streptomyces isolates on Rhizoctonia solani, the causal agent of damping-off of sugar beet. Pak J Biol Sci 9:904–910CrossRefGoogle Scholar
  95. Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria:a critical review. Life Sci Med Res 21:1–30Google Scholar
  96. Sanderson RT (2014) Phosphorus (P) Chemica element. Encyclopedia BritannicaGoogle Scholar
  97. Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spices Aromat Crops 21(2):118–124Google Scholar
  98. Schwarze FWMR, Engels J, Mattheck C (2004) Fungal strategies of wood decay in trees. Springer-Verlag, BerlinGoogle Scholar
  99. Shilev S, Sancho ED, Benlloch-González M (2012) Rhizospheric bacteria alleviate salt-produced stress in sunflower. J Environ Manag 95(Supplement):S37–S41. doi: 10.1016/j.jenvman.2010.07.019 CrossRefGoogle Scholar
  100. Shirmadi M, Savaghebi GR, Khavazi K, Akbarzadeh A, Farahbakhsh M, Rejali F, Sadat A (2010) Effect of microbial inoculants on uptake of nutrient elements in two cultivars of sunflower (Helianthus annuus L.) in saline soils. Not Sci Biol 2(3):57–66Google Scholar
  101. Singh B, Satyanarayana T (2011) Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol Mol Biol Plants 17:93–103. doi: 10.1007/s12298-011-0062-x PubMedPubMedCentralCrossRefGoogle Scholar
  102. Singh R, Soni SK, Patel RP, Kalra A (2013) Technology for improving essential oil yield of Ocimum basilicum L. (sweet basil) by application of bioinoculant colonized seeds under organic field conditions. Ind Crop Prod 45:335–342. doi: 10.1016/j.indcrop.2013.01.003 CrossRefGoogle Scholar
  103. Six J, Bossuyt H, Degryze S, Denef K (2004) Mycorrhizal Symbiosis. Soil Tillage Res 79:7–31CrossRefGoogle Scholar
  104. Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic Press, LondonGoogle Scholar
  105. Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057. doi: 10.1104/pp.111.174581 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Trillas MI, Casanova E, Corxarrera L, Ordovas J, Borrero C, Aviles M (2006) Composts from agricultural waste, the Trichoderma asper-ellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. BioControl 39:32–38. doi: 10.1016/j.biocontrol.2006.05.007 Google Scholar
  107. Sukweenadhia J, Kima Y, Choib E, Kohc S, Leed S, Kima Y, Yanga DC (2015) Paenibacillus yonginensis DCY84Tinduces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress. Microbiol Res 172:7–15. doi: 10.1016/j.micres.2015.01.007 CrossRefGoogle Scholar
  108. Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505PubMedPubMedCentralCrossRefGoogle Scholar
  109. Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58. doi: 10.1080/17429140903125848 CrossRefGoogle Scholar
  110. Teixeira C, Almeida MR, da Silva MN, Bordalo AA, Mucha AP (2014) Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium. Sci Total Environ 493:757–765. doi: 10.1016/j.scitotenv.2014.06.040 PubMedCrossRefGoogle Scholar
  111. Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: A review. BioMed Res Int:11. doi: 10.1155/2013/863240
  112. Trivedi P, Pandey A (2007) Application of immobilized cells of Pseudomonas putida to solubilize insoluble phosphate in broth and soil conditions. J Plant Nutr Soil Sci 170:629–631CrossRefGoogle Scholar
  113. Trivedi P, Pandey A, Palni LMS (2012) Bacterial inoculants for field applications under mountain ecosystem: present initiatives and future prospects. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer-Verlag, Berlin, Heidelberg, pp. 15–44. doi: 10.1007/978-3-642-27515-9_2 CrossRefGoogle Scholar
  114. Veresoglou SD, Chen B, Rillig MC (2012) Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem 46:53–62. doi: 10.1016/j.soilbio.2011.11.018 CrossRefGoogle Scholar
  115. Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132. doi: 10.1016/j.copbio.2005.02.001 PubMedCrossRefGoogle Scholar
  116. Wagner SC (2011) Biological nitrogen fixation. Nat Educ Knowl 3(10):15Google Scholar
  117. Wang H, Liu S, Zhal L, Zhang J, Ren T, Fan B, Liu H (2015) Preparation and utilization of phosphate biofertilizers using agricultural waste. J Integr Agric 14(1):158–167. doi: 10.1016/S2095-3119(14)60760-7 CrossRefGoogle Scholar
  118. White PJ, Karley AJ (2010) Potassium. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients, plant cell monographs, vol 17. Springer, Berlin, pp. 199–224CrossRefGoogle Scholar
  119. Wu HS, Yang XM, Fan JQ, Miao WG, Ling N, Xu YU, Huang QC, Shen Q (2009) Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. BioControl 54:287–295. doi: 10.1007/s10526-008-9168-7 CrossRefGoogle Scholar
  120. Wu Q-S, Srivastava AK, Zou Y-N (2013) AMF-induced tolerance to drought stress in citrus: a review. Sci Hortic 164:77–87. doi: 10.1016/j.scienta.2013.09.010 CrossRefGoogle Scholar
  121. Xiao K, Kinkel LL, Samac DA (2002) Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. BioControl 23:285–295. doi: 10.1006/Bcon.2001.1015 Google Scholar
  122. Xue C, Penton CR, Shen Z, Zhang R, Huang Q, Li R, Ruan Y, Shen Q (2015) Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Sci Report 5:11124. doi: 10.1038/srep11124 CrossRefGoogle Scholar
  123. Yadav J, Verma JP (2014) Effect of seed inoculation with indigenous Rhizobium and plant growth promoting rhizobacteria on nutrients uptake and yields of chickpea (Cicer arietinum L). Eur J Soil Biol 63:70–77. doi: 10.1016/j.ejsobi.2014.05.001 CrossRefGoogle Scholar
  124. Yang J, Kloepper J, Ryu C (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. doi: 10.1016/j.tplants.2008.10.004 PubMedCrossRefGoogle Scholar
  125. Yang XM, Chem LH, Yong XY, Zhana FG, Ran W, Shen QR (2011) Formulations can affect colonization and biocontrol efficiency of Trichoderma harzianum SQR-T037 against Fusarium wilt of cucumbers. Biol Fertil Soils 47:239–248. doi: 10.1007/s00374-010-0527-z CrossRefGoogle Scholar
  126. Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A (2011) Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut 159(10):2675–2683. doi: 10.1016/j.envpol.2011.05.031 PubMedCrossRefGoogle Scholar
  127. Yuste JC, Peñuelas J, Estiarte M, Garcia-mas J, Mattana S, Ogaya R, Pujol M, Sardan J (2011) Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Glob Chang Biol 17:1475–1486. doi: 10.1111/j.1365-2486.2010.02300.x CrossRefGoogle Scholar
  128. Zaidi A, Khan MS, Ahmed E (2014) Microphos principles production and application strategies. In: Khan MS, Zaidi A, Musarrat J (eds) Phosphate solubilizing microorganism. Springer Cham Heidelberg, New York, pp 1–30Google Scholar
  129. Zarjani JK, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Arch Agron Soil Sci 59(12):1713–1723. doi: 10.1080/03650340.2012.756977 CrossRefGoogle Scholar
  130. Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of yellow sea of China. Evid Based Complement Alternat Med:6. doi: 10.1155/2011/615032

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Elizabeth T. Alori
    • 2
    • 1
  • Michael O. Dare
    • 2
  • Olubukola O. Babalola
    • 2
    • 3
    Email author
  1. 1.Department of Crop and Soil SciencesLandmark UniversityOmu-AranNigeria
  2. 2.Food Security and Safety Niche AreaFaculty of Agriculture, Science and TechnologyMmabatho, MafikengSouth Africa
  3. 3.Food Security and Safety Niche Area, Faculty of Agriculture, Science and TechnologyNorth-West UniversityMmabatho, MafikengSouth Africa

Personalised recommendations