Advertisement

Decision Procedure for Separation Logic with Inductive Definitions and Presburger Arithmetic

  • Makoto TatsutaEmail author
  • Quang Loc Le
  • Wei-Ngan Chin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10017)

Abstract

This paper considers the satisfiability problem of symbolic heaps in separation logic with Presburger arithmetic and inductive definitions. First the system without any restrictions is proved to be undecidable. Secondly this paper proposes some syntactic restrictions for decidability. These restrictions are identified based on a new decidable subsystem of Presburger arithmetic with inductive definitions. In the subsystem of arithmetic, every inductively defined predicate represents an eventually periodic set and can be eliminated. The proposed system is quite general as it can handle the satisfiability of the arithmetical parts of fairly complex predicates such as sorted lists and AVL trees. Finally, we prove the decidability by presenting a decision procedure for symbolic heaps with the restricted inductive definitions and arithmetic.

Notes

Acknowledgments

This work is partially supported by MoE Tier-2 grant MOE2013-T2-2-146.

References

  1. 1.
    Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30538-5_9 Google Scholar
  2. 2.
    Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidelberg (2005). doi: 10.1007/11575467_5 CrossRefGoogle Scholar
  3. 3.
    Bozga, M., Iosif, R., Perarnau, S.: Quantitative separation logic and programs with lists. J. Autom. Reason. 45(2), 131–156 (2010)Google Scholar
  4. 4.
    Brotherston, J., Fuhs, C., Gorogiannis, N., Perez, J.N.: A decision procedure for satisfiability inseparation logic with inductive predicates. In: Proceedings of CSL-LICS 2014 (2014). Article 25Google Scholar
  5. 5.
    Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size and bag properties viauser-defined predicates in separation logic. Sci. Comput. Program. 77(9), 1006–1036 (2012)Google Scholar
  6. 6.
    Enderton, H.B.: A Mathematical Introduction to Logic, 2 edn. Academic Press (2000)Google Scholar
  7. 7.
    Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 21–38. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38574-2_2 CrossRefGoogle Scholar
  8. 8.
    Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation logic with tree automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 201–218. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-11936-6_15 Google Scholar
  9. 9.
    Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39799-8_54 CrossRefGoogle Scholar
  10. 10.
    Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 711–728. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-08867-9_47 Google Scholar
  11. 11.
    Navarro Pérez, J.A., Rybalchenko, A.: Separation logic modulo theories. In: Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 90–106. Springer, Heidelberg (2013). doi: 10.1007/978-3-319-03542-0_7 CrossRefGoogle Scholar
  12. 12.
    Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: Proceedings of Seventeenth Annual IEEE Symposium on Logic in Computer Science (LICS2002), pp. 55–74 (2002)Google Scholar
  13. 13.
    Brotherston, J., Gorogiannis, N., Kanovich, M., Rowe, R.: Model checking for symbolic-heap separation logic with inductive predicates. In: Proceedings of POPL-43, pp. 84–96 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.National Institute of Informatics, SokendaiTokyoJapan
  2. 2.Singapore University of Technology and DesignSingaporeSingapore
  3. 3.National University of SingaporeSingaporeSingapore

Personalised recommendations