Neuroplasticity-Based Technologies and Interventions for Restoring Motor Functions in Multiple Sclerosis

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 958)


Motor impairments are very common in multiple sclerosis (MS), leading to a reduced Quality of Life and active participation. In the past decades, new insights into the functional reorganization processes that occur after a brain injury have been introduced. Specifically, the motor practice seems to be determinant to induce neuroplastic changes and motor recovery. More recently, these findings have been extended to multiple sclerosis, in particular, it has been hypothesized that disease progression, functional reorganization and disability are mutually related. For this reason, neuroplasticity-based technologies and interventions have been rapidly introduced in MS rehabilitation. Constraint-induced movement therapy (CIMT), robotics and virtual reality training are new rehabilitative interventions that deliver an intensive e task-specific practice, which are two critical factors associated with functional improvements and cortical reorganization. Another promising strategy for enhancing neuroplastic changes is non-invasive brain stimulation that can be used with a priming effect on motor training. The aims of this chapter are to review the evidence of neuroplastic changes in multiple sclerosis and to present technologies and interventions that have been tested in clinical trials.


Constraint-induced movement therapy Multiple sclerosis Non-invasive brain stimulation Robotics Use-dependent neuroplasticity Virtual reality 



body weight support training on a treadmill


constraint-induced movement therapy


central nervous system


central pattern generators


functional electrical stimulation


intensive comparison therapy


multiple sclerosis


non-invasive brain stimulation


paired associative stimulation


robot-assisted gait training


robotic training


repetitive transcranial magnetic stimulation


transcranial direct current stimulation


usual care


virtual reality



The authors thank the Rehabilitation Medicine Unit of Ferrara University Hospital and all the MS patients and their families that received rehabilitation in our center.


  1. Adkins DL, Boychuk J, Remple MS, Kleim JA (2006) Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol 101:1776–1782CrossRefPubMedGoogle Scholar
  2. Beer RF, Ellis MD, Holubar BG, Dewald JP (2007) Impact of gravity loading on post-stroke reaching and its relationship to weakness. Muscle Nerve 36:242–250CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beer S, Aschbacher B, Manoglou D, Gamper E, Kool J, Kesselring J (2008) Robot-assisted gait training in multiple sclerosis: a pilot randomized trial. Mult Scler 14:231–236CrossRefPubMedGoogle Scholar
  4. Belda-Lois JM, Mena-del Horno S, Bermejo-Bosch I, Moreno JC, Pons JL, Farina D, Iosa M, Molinari M, Tamburella F, Ramos A, Caria A, Solis-Escalante T, Brunner C, Rea M (2011) Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuroeng Rehabil 13(8):66CrossRefGoogle Scholar
  5. Bonzano L, Tacchino A, Brichetto G, Roccatagliata L, Dessypris A, Feraco P, Lopes De Carvalho ML, Battaglia MA, Mancardi GL, Bove M (2014) Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis. NeuroImage 90:107–116CrossRefPubMedGoogle Scholar
  6. Bovolenta F, Goldoni M, Clerici P, Agosti M, Franceschini M (2009) Robot therapy for functional recovery of the upper limbs: a pilot study on patients after stroke. J Rehabil Med 41:971–975CrossRefPubMedGoogle Scholar
  7. Brichetto G, Spallarossa P, de Carvalho ML, Battaglia MA (2013) The effect of Nintendo® Wii® on balance in people with multiple sclerosis: a pilot randomized control study. Mult Scler 19:1219–1221CrossRefPubMedGoogle Scholar
  8. Burhan AM, Subramanian P, Pallaveshi L, Barnes B, Montero-Odasso M (2015) Modulation of the left prefrontal cortex with high frequency repetitive transcranial magnetic stimulation facilitates gait in multiple sclerosis. Case Rep Neurol Med 2015:251829PubMedPubMedCentralGoogle Scholar
  9. Carpinella I, Cattaneo D, Abuarqub S, Ferrarin M (2009) Robot-based rehabilitation of the upper limbs in multiple sclerosis: feasibility and preliminary results. J Rehabil Med 41:966–970CrossRefPubMedGoogle Scholar
  10. Carpinella I, Cattaneo D, Bertoni R, Ferrarin M (2012) Robot training of upper limb in multiple sclerosis: comparing protocols with or without manipulative task components. IEEE Trans Neural Syst Rehabil Eng 20:351–360CrossRefPubMedGoogle Scholar
  11. Casadio M, Sanguineti V, Morasso PG, Arrichiello V (2006) Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol Health Care 14:123–142PubMedGoogle Scholar
  12. Corbetta D, Sirtori V, Castellini G, Moja L, Gatti R (2015) Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst Rev 10:CD004433Google Scholar
  13. Cuypers K, Leenus DJ, Van Wijmeersch B, Thijs H, Levin O, Swinnen SP, Meesen RL (2013) Anodal tDCS increases corticospinal output and projection strength in multiple sclerosis. Neurosci Lett 554:151–155CrossRefPubMedGoogle Scholar
  14. Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Stein J, Bever C, Hogan N (2007) Changing motor synergies in chronic stroke. J Neurophysiol 98:757–768CrossRefPubMedGoogle Scholar
  15. Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, Spinal Cord Injury Locomotor Trial Group (2006) Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology 66:484–493CrossRefPubMedPubMedCentralGoogle Scholar
  16. Duncan P, Sullivan K, Behrman A, Azen SP, Wu SS, Nadeau SE, Dobkin BH, Rose DK, Tilson JK, Cen S, Hayden SK, LEAPS Investigative Team (2011) Body-weight-supported treadmill rehabilitation program after stroke. N Engl J Med 364:2026–2036CrossRefPubMedPubMedCentralGoogle Scholar
  17. Elzamarany E, Afifi L, El-Fayoumy NM, Salah H, Nada M (2016) Motor cortex rTMS improves dexterity in relapsing-remitting and secondary progressive multiple sclerosis. Acta Neurol Belg 116:145–150CrossRefPubMedGoogle Scholar
  18. Fasoli S, Krebs H, Stein J, Frontera W, Hogan N (2003) Effect of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil 84:477–482CrossRefPubMedGoogle Scholar
  19. Feinstein A, Freeman J, Lo AC (2015) Treatment of progressive multiple sclerosis: what works, what does not, and what is needed. Lancet Neurol 14:194–207CrossRefPubMedGoogle Scholar
  20. Feys P, Coninx K, Kerkhofs L, De Weyer T, Truyens V, Maris A, Lamers I (2015) Robot-supported upper limb training in a virtual learning environment: a pilot randomized controlled trial in persons with MS. J Neuroeng Rehabil 12:60CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, Lu B (2010) Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66:198–204CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gandolfi M, Geroin C, Picelli A, Munari D, Waldner A, Tamburin S, Marchioretto F, Smania N (2014) Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: a randomized controlled trial. Front Hum Neurosci 8:318CrossRefPubMedPubMedCentralGoogle Scholar
  23. Giesser B, Beres-Jones J, Budovitch A, Herlihy E, Harkema S (2007) Locomotor training using body weight support on a treadmill improves mobility in persons with multiple sclerosis: a pilot study. Mult Scler 13:224–231CrossRefPubMedGoogle Scholar
  24. Gijbels D, Lamers I, Kerkhofs L, Alders G, Knippenberg E, Feys P (2011) The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study. J Neuroeng Rehabil 8:5CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hesse S, Uhlenbrock D (2000) A mechanized gait trainer for restoration of gait. J Rehabil Res Dev 37:701–708PubMedGoogle Scholar
  26. Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML (2005) Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke 36:1960–1966CrossRefPubMedGoogle Scholar
  27. Hogan N, Krebs HI, Rohrer B, Palazzolo JJ, Dipietro L, Fasoli SE, Stein J, Hughes R, Frontera WR, Lynch D, Volpe BT (2006) Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. J Rehabil Res Dev 43:605–618CrossRefPubMedGoogle Scholar
  28. Housman SJ, Scott KM, Reinkensmeyer DJ (2009) A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair 23:505–514CrossRefPubMedGoogle Scholar
  29. Johansson S, Ytterberg C, Claesson IM, Lindberg J, Hillert J, Andersson M, Widén Holmqvist L, von Koch L (2007) High concurrent presence of disability in multiple sclerosis. Associations with perceived health. J Neurol 254:767–773CrossRefPubMedGoogle Scholar
  30. Kang N, J.J S, Cauraugh JH (2015) Transcranial direct current stimulation facilitates motor learning post-stroke: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 87:345–355CrossRefPubMedGoogle Scholar
  31. Kister I, Bacon TE, Chamot E, Salter AR, Cutter GR, Kalina JT, Herbert J (2013) Natural history of multiple sclerosis symptoms. Int J MS Care 15:146–158CrossRefPubMedPubMedCentralGoogle Scholar
  32. Klamroth-Marganska V, Blanco J, Campen K, Curt A, Dietz V, Ettlin T, Felder M, Fellinghauer B, Guidali M, Kollmar A, Luft A, Nef T, Schuster-Amft C, Stahel W, Riener R (2014) Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol 13:159–166CrossRefPubMedGoogle Scholar
  33. Kleim JA, Jones TA (2008) Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res 51:S225–S239CrossRefPubMedGoogle Scholar
  34. Kleim JA, Lussnig E, Schwarz ER, Comery TA, Greenough WT (1996) Synaptogenesis and fos expression in the motor cortex of the adult rat after motor skill learning. J Neurosci 16:4529–4535PubMedGoogle Scholar
  35. Kleim JA, Hogg TM, VandenBerg PM, Cooper NR, Bruneau R, Remple M (2004) Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. J Neurosci 24:628–633CrossRefPubMedGoogle Scholar
  36. Koch G, Rossi S, Prosperetti C, Codecà C, Monteleone F, Petrosini L, Bernardi G, Kramer A, Dettmers C, Gruber M (2008) Improvement of hand dexterity following motor cortex rTMS in multiple sclerosis patients with cerebellar impairment. Mult Scler 14:995–998CrossRefPubMedGoogle Scholar
  37. Kramer A, Dettmers C, Gruber M (2014) Exergaming with additional postural demands improves balance and gait in patients with multiple sclerosis as much as conventional balance training and leads to high adherence to home-based balance training. Arch Phys Med Rehabil 95:1803–1809CrossRefPubMedGoogle Scholar
  38. Krebs HI, Hogan N (2012) Robotic therapy: the tipping point. Am J Phys Med Rehabil 91:S290–S297CrossRefPubMedPubMedCentralGoogle Scholar
  39. Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6:75–87CrossRefPubMedPubMedCentralGoogle Scholar
  40. Krebs HI, Hogan N, Volpe BT, Aisen ML, Edelstein L, Diels C (1999) Overview of clinical trials with MIT-MANUS: a robot-aided neuro-rehabilitation facility. Technol Health Care 7:419–423PubMedGoogle Scholar
  41. Lang CE, Macdonald JR, Reisman DS, Boyd L, Jacobson Kimberley T, Schindler-Ivens SM, Hornby TG, Ross SA, Scheets PL (2009) Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil 90:1692–1698CrossRefPubMedPubMedCentralGoogle Scholar
  42. Laver KE, George S, Thomas S, Deutsch JE, Crotty M (2015) Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev 2:CD008349Google Scholar
  43. Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM, Cincotta M, de Carvalho M, De Ridder D, Devanne H, Di Lazzaro V, Filipović SR, Hummel FC, Jääskeläinen SK, Kimiskidis VK, Koch G, Langguth B, Nyffeler T, Oliviero A, Padberg F, Poulet E, Rossi S, Rossini PM, Rothwell JC, Schönfeldt-Lecuona C, Siebner HR, Slotema CW, Stagg CJ, Valls-Sole J, Ziemann U, Paulus W, Garcia-Larrea L (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125:2150–2206CrossRefPubMedGoogle Scholar
  44. Liew SL, Santarnecchi E, Buch ER, Cohen LG (2014) Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front Hum Neurosci 8:378CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lo AC, Triche EW (2008) Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil Neural Repair 22:661–671CrossRefPubMedGoogle Scholar
  46. Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, Ringer RJ, Wagner TH, Krebs HI, Volpe BT, Bever CT Jr, Bravata DM, Duncan PW, Corn BH, Maffucci AD, Nadeau SE, Conroy SS, Powell JM, Huang GD, Peduzzi P (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 362:1772–1783CrossRefPubMedGoogle Scholar
  47. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M (2002) Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 83:952–959CrossRefPubMedGoogle Scholar
  48. Mark VW, Taub E, Morris D (2006) Neuroplasticity and constraint-induced movement therapy. Eur Medicophys 42:269–284Google Scholar
  49. Mark VW, Taub E, Bashir K, Uswatte G, Delgado A, Bowman MH, Bryson CC, McKay S, Cutter GR (2008) Constraint-induced movement therapy can improve hemiparetic progressive multiple sclerosis. Preliminary findings. Mult Scler 14:992–994CrossRefPubMedGoogle Scholar
  50. Mark VW, Taub E, Uswatte G, Bashir K, Cutter GR, Bryson CC, Bishop-McKay S, Bowman MH (2013) Constraint-induced movement therapy for the lower extremities in multiple sclerosis: case series with 4-year follow-up. Arch Phys Med Rehabil 94:753–760CrossRefPubMedGoogle Scholar
  51. Meesen RL, Thijs H, Leenus DJ, Cuypers K (2014) A single session of 1 mA anodal tDCS-supported motor training does not improve motor performance inpatients with multiple sclerosis. Restor Neurol Neurosci 32:293–300PubMedGoogle Scholar
  52. Mehrholz J, Elsner B, Werner C, Kugler J, Pohl M (2013) Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 7:CD006185Google Scholar
  53. Nef T, Guidali M, Riener R (2009) ARMin III – arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionics Biomech 6:127–142CrossRefGoogle Scholar
  54. Nilsagård YE, Forsberg AS, von Koch L (2013) Balance exercise for persons with multiple sclerosis using Wii games: a randomised, controlled multi-centre study. Mult Scler 19:209–216CrossRefPubMedGoogle Scholar
  55. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527:633–639CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM (1996) Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16:785–807PubMedGoogle Scholar
  57. Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M (1995) Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophisiol 74:1037–1045Google Scholar
  58. Pascual-Leone A, Tormos JM, Keenan J, Tarazona F, Canete C, Catala MD (1998) Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol 15:333–343CrossRefPubMedGoogle Scholar
  59. Peruzzi A, Cereatti A, Della Croce U, Mirelman A (2016) Effects of a virtual reality and treadmill training on gait of subjects with multiple sclerosis: a pilot study. Mult Scler Relat Disord 5:91–96CrossRefPubMedGoogle Scholar
  60. Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, Hoölig G, Koch R, Hesse S (2007) Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil 21:17–27CrossRefPubMedGoogle Scholar
  61. Prosperini L, Fortuna D, Giannì C, Leonardi L, Marchetti MR, Pozzilli C (2013) Home-based balance training using the Wii balance board: a randomized, crossover pilot study in multiple sclerosis. Neurorehabil Neural Repair 27:516–525CrossRefPubMedGoogle Scholar
  62. Rahman T, Sample W, Jayakumar S, King MM, Wee JY, Seliktar R, Alexander M, Scavina M, Clark A (2006) Passive exoskeletons for assisting limb movement. J Rehabil Res Dev 43:583–590CrossRefPubMedGoogle Scholar
  63. Reddy H, Narayanan S, Woolrich M, Mitsumori T, Lapierre Y, Arnold DL, Matthews PM (2002) Functional brain reorganization for hand movement in patients with multiple sclerosis: defining distinct effects of injury and disability. Brain 125:2646–2657CrossRefPubMedGoogle Scholar
  64. Remple MS, Bruneau RM, VandenBerg PM, Goertzen C, Kleim JA (2001) Sensitivity of cortical movement representations to motor experience: evidence that skill learning but not strength training induces cortical reorganization. Behav Brain Res 123:133–141CrossRefPubMedGoogle Scholar
  65. Rizzo AA (2002) Virtual reality and disability: emergence and challenge. Disabil Rehabil 24:567–569CrossRefGoogle Scholar
  66. Rocca MA, Colombo B, Falini A, Ghezzi A, Martinelli V, Scotti G, Comi G, Filippi M (2005) Cortical adaptation in patients with MS: a cross-sectional functional MRI study of disease phenotypes. Lancet Neurol 4:618–626CrossRefPubMedGoogle Scholar
  67. Ruiz J, Labas MP, Triche EW, Lo AC (2013) Combination of robot-assisted and conventional body-weight-supported treadmill training improves gait in persons with multiple sclerosis: a pilot study. J Neurol Phys Ther 37:187–193CrossRefPubMedGoogle Scholar
  68. Sampson P, Freeman C, Coote S, Demain S, Feys P, Meadmore K, Hughes AM (2016) Using functional electrical stimulation mediated by iterative learning control and robotics to improve arm movement for people with multiple sclerosis. IEEE Trans Neural Syst Rehabil Eng 24:235–248CrossRefPubMedGoogle Scholar
  69. Schoonheim MM, Geurts JJ, Barkhof F (2010) The limits of functional reorganization in multiple sclerosis. Neurology 74:1246–1247CrossRefPubMedGoogle Scholar
  70. Schwartz I, Sajin A, Moreh E, Fisher I, Neeb M, Forest A, Vaknin-Dembinsky A, Karusis D, Meiner Z (2012) Robot-assisted gait training in multiple sclerosis patients: a randomized trial. Mult Scler 18:881–890CrossRefPubMedGoogle Scholar
  71. Straudi S, Benedetti MG, Venturini E, Manca M, Foti C, Basaglia N (2013) Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial. NeuroRehabilitation 33:555–563PubMedGoogle Scholar
  72. Straudi S, Fanciullacci C, Martinuzzi C, Pavarelli C, Rossi B, Chisari C, Basaglia N (2016) The effects of robot-assisted gait training in progressive multiple sclerosis: a randomized controlled trial. Mult Scler 22:373–384CrossRefPubMedGoogle Scholar
  73. Swain RA, Harris AB, Wiener EC, Dutka MV, Morris HD, Theien BE, Konda S, Engberg K, Lauterbur PC, Greenough WT (2003) Prolonged exercise induces angiogenesis and increases cerebral flood volume in primary motor cortex of the rat. Neuroscience 117:1037–1046CrossRefPubMedGoogle Scholar
  74. Takahashi CD, Reinkensmeyer DJ (2003) Hemiparetic stroke impairs anticipatory control of arm movement. Exp Brain Res 149:131–140CrossRefPubMedGoogle Scholar
  75. Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC (2008) Robot-based hand motor therapy after stroke. Brain 131:425–437CrossRefPubMedGoogle Scholar
  76. Tomassini V, Johansen-Berg H, Leonardi L, Paixãom L, Jbabdi S, Palace J, Pozzilli C, Matthews PM (2011) Preservation of motor skill learning in patients with multiple sclerosis. Mult Scler 17:103–115CrossRefPubMedGoogle Scholar
  77. Tomassini V, Matthews PM, Thompson AJ, Fuglø D, Geurts JJ, Johansen-Berg H, Jones DK, Rocca MA, Wise RG, Barkhof F, Palace J (2012) Neuroplasticity and functional recovery in multiple sclerosis. Nat Rev Neurol 8:635–646CrossRefPubMedPubMedCentralGoogle Scholar
  78. Uswatte G, Taub E (2013) Constraint-induced movement therapy: a method for harnessing neuroplasticity to treat motor disorders. Prog Brain Res 207:379–401CrossRefPubMedGoogle Scholar
  79. Vaney C, Gattlen B, Lugon-Moulin V, Meichtry A, Hausammann R, Foinant D, Anchisi-Bellwald AM, Palaci C, Hilfiker R (2012) Robotic-assisted step training (lokomat) not superior to equal intensity of over-ground rehabilitation in patients with multiple sclerosis. Neurorehabil Neural Repair 26:212–221CrossRefPubMedGoogle Scholar
  80. Veerbeek JM, Van Wegen E, Van Peppen R, Van der Wees PJ, Hendriks E, Rietberg M (2014) What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One 9:e87987CrossRefPubMedPubMedCentralGoogle Scholar
  81. Volpe B, Krebs H, Hogan N, Edelsteinn L, Diels C, Aisen M (1999) Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology 53:1874–1876CrossRefPubMedGoogle Scholar
  82. Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A (2007) Transcranial direct current stimulation: a computer-based human model study. NeuroImage 35:1113–1124CrossRefPubMedGoogle Scholar
  83. Warraich Z, Kleim JA (2010) Neural plasticity: the biological substrate for neurorehabilitation. PMR 2:S208–S219CrossRefGoogle Scholar
  84. Weiss PL, Kizony R, Feintuch U, Katz N (2006) Virtual reality in neurorehabilitation. Textbook Neural Repair Rehabil 51:182–197CrossRefGoogle Scholar
  85. Williams JA, Pascual-Leone A, Fregni F (2010) Interhemispheric modulation induced by cortical stimulation and motor training. Phys Ther 90:398–410CrossRefPubMedGoogle Scholar
  86. Wirz M, Bastiaenen C, De Bie R, Dietz V (2011) Effectiveness od automated locomotor training in patients with acute incomplete spinal cord injury: a randomized controller multi center trial. BMC Neurol 11:60CrossRefPubMedPubMedCentralGoogle Scholar
  87. Zeller D, aufm Kampe K, Biller A, Stefan K, Gentner R, Schütz A, Bartsch A, Bendszus M, Toyka KV, Rieckmann P, Classen J (2010) Rapid-onset central motor plasticity in multiple sclerosis. Neurology 74:728–735CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Neuroscience and Rehabilitation DepartmentFerrara University HospitalFerraraItaly

Personalised recommendations