Parikh and Wittgenstein

  • Juliet FloydEmail author
Part of the Outstanding Contributions to Logic book series (OCTR, volume 11)


A survey of Parikh’s philosophical appropriations of Wittgensteinian themes, placed into historical context against the backdrop of Turing’s famous paper, “On computable numbers, with an application to the Entscheidungsproblem” (Turing in Proc Lond Math Soc 2(42): 230–265, 1936/1937) and its connections with Wittgenstein and the foundations of mathematics. Characterizing Parikh’s contributions to the interaction between logic and philosophy at its foundations, we argue that his work gives the lie to recent presentations of Wittgenstein’s so-called metaphilosophy (e.g., Horwich in Wittgenstein’s metaphilosophy. Oxford University Press, Oxford, 2012) as a kind of “dead end” quietism. From early work on the idea of a feasibility in arithmetic (Parikh in J Symb Log 36(3):494–508, 1971) and vagueness (Parikh in Logic, language and method. Reidel, Boston, pp 241–261, 1983) to his more recent program in social software (Parikh in Advances in modal logic, vol 2. CSLI Publications, Stanford, pp 381–400, 2001a), Parikh’s work encompasses and touches upon many foundational issues in epistemology, philosophy of logic, philosophy of language, and value theory. But it expresses a unified philosophical point of view. In his most recent work, questions about public and private languages, opportunity spaces, strategic voting, non-monotonic inference and knowledge in literature provide a remarkable series of suggestions about how to present issues of fundamental importance in theoretical computer science as serious philosophical issues.


Social software Wittgenstein Turing Parikh Common knowledge 



The author is grateful to Akihiro Kanamori, Juliette Kennedy and two anonymous referees for comments that led to a much improved final version of this paper.


  1. Arló-Costa, H., & Parikh, R. (2005). Conditional probability and defeasible inference. Journal of Philosophical Logic, 34, 97–119.CrossRefGoogle Scholar
  2. Austin, J. L. (1946). Other minds. Proceedings of the Aristotelian Society, Supplementary Volume, XX (1946), 148–187. Reprinted in Austin, J. L. (1976). In J. O. Urmson & G. J. Warnock (Eds.), Philosophical papers (pp. 76–116). Oxford University Press.Google Scholar
  3. Başkent, C., Loohuis, O. L., & Rohit, P. (2012). On knowledge and obligation. Episteme, 9(2), 171–188.CrossRefGoogle Scholar
  4. Bernays, P. (1959). Betrachtungen zu Ludwig Wittgensteins Bemerkungen über die Grundlagen der Mathematik/Comments on Ludwig Wittgenstein’s Remarks on the Foundations of Mathematics. Ratio, 2(1), 1–22.Google Scholar
  5. Buss, S. R. (1999). Bounded arithmetic, proof complexity and two papers of Parikh. Annals of Pure and Applied Logic, 96(13), 43–55.CrossRefGoogle Scholar
  6. Cavell, S. (1979). The claim of reason: Wittgenstein, skepticism, morality, and tragedy. Oxford, New York: Clarendon Press; Oxford University Press.Google Scholar
  7. Chopra, S., Georgatos, K., & Parikh, R. (2001). Relevance sensitive non-monotonic inference on belief sequences. Journal of Applied Non-Classical Logics, 11(1–2), 131–150.CrossRefGoogle Scholar
  8. Chopra, S., & Parikh, R. (2000). Relevance sensitive belief structures. Annals of Mathematics and Artificial Intelligence, 28, 259–285.CrossRefGoogle Scholar
  9. Collins, A. (2013). Review of Paul Horwich. Wittgenstein’s Metaphilosophy. Notre Dame Philosophical Reviews.
  10. Copeland, B. J. (2012). Turing: Pioneer of the information age. Oxford: Oxford University Press.Google Scholar
  11. Copeland, J. (2004). The essential turing. Oxford: Clarendon Press.Google Scholar
  12. Dabrowski, A., Moss, L. S., & Parikh, R. (1996). Topological reasoning and the logic of knowledge. Annals of Pure and Applied Logic, 78(1–3), 73–110.CrossRefGoogle Scholar
  13. Davidson, D. (1982). Rational animals. Dialectica, 36(4), 317–328. Reprinted in Davidson, D. (2001). Subjective, intersubjective, and objective (pp. 95–106). Oxford: Oxford University Press.Google Scholar
  14. Davis, M. (2000). The Universal computer: The road from Leibniz to Turing (1st ed.). New York: Norton.Google Scholar
  15. Davis, M. (2001). Engines of logic: Mathematicians and the origin of the computer. New York: Norton.Google Scholar
  16. Davis, M. (forthcoming). Universality is ubiquitous. In: J. Floyd & A. Bokulich (Eds.), Philosophical explorations of the legacy of Alan Turing: Turing 100, Boston Studies in the Philosophy and History of Science. Berlin: Springer.Google Scholar
  17. Dean, W., & Parikh, R. (2011). The logic of campaigning. In M. Banerjee & A. Seth (Eds.), Logic and its applications, Lecture Notes in Computer Science, Volume 6521, 4th Indian Conference, ICLA 2011, Delhi, India, January 5–11, 2011 (pp. 38–49). Berlin: Springer.Google Scholar
  18. Diamond, C. (1991). The realistic spirit: Wittgenstein, philosophy and the mind. Cambridge, MA: MIT Press.Google Scholar
  19. Dummett, M. (1959). Wittgenstein’s philosophy of mathematics. The Philosophical Review, 68(3), 324–348.CrossRefGoogle Scholar
  20. Dummett, M. (1975). Wang’s paradox. Synthese, 30(3), 301–324.CrossRefGoogle Scholar
  21. Esenine, V. A. (1970). The ultra-intuitionistic criticism and the antitraditional program for foundations of mathematics. In A. Kino, J. Myhill, & R. E. Vesley (Eds.), Intuitionism and proof theory, Proceedings of the conference at Buffalo, New York, 1968 (pp. 3–46). Amsterdam: North-Holland.Google Scholar
  22. Feltz, A. (2008). Problems with the appeal to intuition in epistemology. Philosophical Explorations, 11(2), 131–141.CrossRefGoogle Scholar
  23. Floyd, J. (1995). On saying what you really want to say: Wittgenstein, Gödel and the trisection of the angle. In J. Hintikka (Ed.), From Dedekind to Gödel: The foundations of mathematics in the early twentieth century series: Vol. 251 of the Synthese library (pp. 373–426). Boston: Kluwer Academic.Google Scholar
  24. Floyd, J. (2001). Prose versus proof: Wittgenstein on gödel, tarski and truth. Philosophia Mathematica, 3(9), 901–928.Google Scholar
  25. Floyd, J. (2011). Wang and Wittgenstein. In C. Parsons & M. Link (Eds.), Hao Wang, logician and philosopher, Texts in Philosophy (pp. 145–194). London: College Publications.Google Scholar
  26. Floyd, J. (2012). Wittgenstein’s diagonal argument: A variation on Cantor and Turing. In P. Dybjer, S. Lindström, E. Palmgren, & G. Sundholm (Eds.), Epistemology versus ontology: Essays on the philosophy and foundations of mathematics in honour of per Martin-Löf (Vol. 27, pp. 25–44). Dordrecht: Springer.CrossRefGoogle Scholar
  27. Floyd, J. (2013a). The varieties of rigorous experience. In M. Beaney (Ed.), The Oxford handbook of the history of early analytic philosophy (pp. 1003–1042). New York: Oxford University Press.Google Scholar
  28. Floyd, J. (2013b). Turing, Wittgenstein and types: Philosophical aspects of Turing’s “The reform of mathematical notation and phraseology” (1944–5). In B. S. Cooper & J. van Leeuwen (Eds.), Alan Turing: His work and impact (pp. 250–253). Amsterdam: Elsevier Science.Google Scholar
  29. Floyd, J. (forthcoming). Turing on ‘Common Sense’: Cambridge resonances. In J. Floyd & A. Boklich (Eds.), (forthcoming).Google Scholar
  30. Floyd, J., & Bokulich, A. (Eds.). (2016). Philosophical explorations of the legacy of alan turing: Turing 100. Springer: Boston Studies in the Philosophy of Sciences Series.Google Scholar
  31. Floyd, J., & Kanamori, A. (2016). Gödel vis-à-vis Russell: Logic and set theory to philosophy. In G. Crocco, & E.-M. Engelen (Eds.), Kurt Gödel: Philosopher-Scientist (pp. 243–326). Presses Universitaires de France.Google Scholar
  32. Friederich, S. (2011). Motivating Wittgenstein’s perspective on mathematical sentences as norms. Philosophia Mathematica, 19(1), 1–19.CrossRefGoogle Scholar
  33. Gettier, E. L. (1963). Is justified true belief knowledge? Analysis, 23(6), 121–123.CrossRefGoogle Scholar
  34. Gilbert, M. (1989). On social facts. London: Routledge.Google Scholar
  35. Gilbert, M. (2014). Joint commitment: How we make the social world. Oxford: Oxford University Press.Google Scholar
  36. Gödel, K. (1931). On formally undecidable propositions of Principia mathematica and related Systems I [1931]. In S. Feferman, et al. (Eds.), Kurt Gödel collected works: Vol. I, Publications 1929–1936 (pp. 145–195). New York: Oxford University Press.Google Scholar
  37. Gödel, K. (1946). Remarks before the princeton bicentennial conference on problems in mathematics [1946]. In S. Feferman, et al. (Eds.), Kurt Gödel collected works: Vol. II, Publications, 1938–1974 (pp. 144–153). New York: Oxford University Press.Google Scholar
  38. Gödel, K. (1972). Some remarks on the undecidability results. In S. Feferman, et al. (Eds.), Kurt Gödel collected works: Vol. II, Publications 1938–1974 (pp. 305–306). Oxford: Oxford University Press.Google Scholar
  39. Goldfarb, W. (1985). Poincaré against the logicists. In W. Aspray & P. Kitcher (Eds.), History and philosophy of modern mathematics, Minnesota Studies in the Philosophy of Science (Vol. 11, pp. 61–81). Minneapolis, MN: University of Minnesota Press.Google Scholar
  40. Horwich, P. (2012). Wittgenstein’s metaphilosophy. Oxford: Oxford University Press.CrossRefGoogle Scholar
  41. Horwich, P. (2013). Was Wittgenstein right? The New York Times, Opinionator, March 3.Google Scholar
  42. Johnson, M. P., & Parikh, R. (2008). Probabilistic conditionals are almost monotonic. Review of Symbolic Logic, 1(1), 73–80.CrossRefGoogle Scholar
  43. Kreisel, G. (1958). Wittgenstein’s remarks on the foundations of mathematics. British Journal for the Philosophy of Science, 9, 135–158.Google Scholar
  44. Kripke, S. A. (1982). Wittgenstein on rules and private language: An elementary exposition. Cambridge, MA: Harvard University Press.Google Scholar
  45. Lewis, D. K. (1969). Convention: A philosophical study. Cambridge, MA: Harvard University Press.Google Scholar
  46. Lewis, D. K. (1976). Probabilities of conditionals and conditional probabilities. Philosophical Review, 85, 297–315.CrossRefGoogle Scholar
  47. Lewis, D. K. (1979). Scorekeeping in a language game. Journal of Philosophical Logic, 8(1), 339–359.CrossRefGoogle Scholar
  48. Lewis, D. K. (1996). Elusive knowledge. Australasian Journal of Philosophy, 74(4), 549–567.CrossRefGoogle Scholar
  49. Malcolm, N., & Wittgenstein, L. (2001). A memoir. Oxford: Clarendon Press.Google Scholar
  50. Millikan, R. G. (2006). Styles of rationality. In M. Nudds & S. Hurley (Eds.), Rational animals? (pp. 117–126). Oxford: Oxford University Press.CrossRefGoogle Scholar
  51. Misak, C. (2000). Truth, politics, morality: Pragmatism and deliberation. New York: Routledge.CrossRefGoogle Scholar
  52. Monk, R., & Wittgenstein, L. (1990). The duty of genius. New York: Free Press/Jonathan Cape.Google Scholar
  53. Mühlhölzer, F. (2006). “A mathematical proof must be surveyable”: What Wittgenstein meant by this and what it implies. Grazer Philosophische Studien, 71, 57–86.Google Scholar
  54. Pacuit, E., & Parikh, R. (2005). Safe votes, sincere votes, and strategizing. Presented at the 16th International conference on game theory, Stony Brook.Google Scholar
  55. Pacuit, E., Parikh, R., & Cogan, E. (2006). The logic of knowledge based obligation. Synthese, 149(2), 311–341.CrossRefGoogle Scholar
  56. Parikh, R. (1971). Existence and feasibility in arithmetic. The Journal of Symbolic Logic, 36(3), 494–508.CrossRefGoogle Scholar
  57. Parikh, R. (1973). Some results on the lengths of proofs. Transactions of the American Mathematical Society, 177, 29–36.CrossRefGoogle Scholar
  58. Parikh, R. (1983). The problem of vague predicates. In R. Cohen & M. W. Wartofsky (Eds.), Logic, language and method (pp. 241–261). Boston: Reidel.CrossRefGoogle Scholar
  59. Parikh, R. (1986). Introductory Note to Gödel (1936a), “On the Length of Proofs”. In S. Feferman (Ed.), Kurt Gödel collected works: Vol. I, Publications, 1929–1936 (pp. 394–395). Oxford: Oxford University Press.Google Scholar
  60. Parikh, R. (1994). Vagueness and utility: The semantics of common nouns. Linguistics and Philosophy, 17(6), 521–535.CrossRefGoogle Scholar
  61. Parikh, R. (1995). How Far can we formalize language games? In E. K. DePauli-Scimanovich & F. Stadler (Eds.), The foundational debate (pp. 89–100). Amsterdam: Kluwer Academic.Google Scholar
  62. Parikh, R. (1996a). Some reminiscences of Kreisel. In P. Odifreddi (Ed.), Kreiseliana. About and around Georg Kreisel (pp. 89–96). A. K. Peters.Google Scholar
  63. Parikh, R. (1996b). Vague predicates and language games. Theoria, 11(3), 97–107.Google Scholar
  64. Parikh, R. (1998). Length and structure of proofs. Synthese, 114(1), 41–48.CrossRefGoogle Scholar
  65. Parikh, R. (2001a). Language as social software. In J. Floyd & S. Shieh (Eds.), Future pasts: The analytic tradition in twentieth century philosophy (pp. 339–350). New York: Oxford University Press.CrossRefGoogle Scholar
  66. Parikh, R. (2001b). Propositions, propositional attitudes and belief revision. In M. Zakharyaschev, K. Segerberg, M. de Rijke, & H. Wansing (Eds.), Advances in modal logic (Vol. 2, pp. 381–400). Stanford, CA: CSLI Publications.Google Scholar
  67. Parikh, R. (2002). Social software. Synthese, 132(3), 187–211.CrossRefGoogle Scholar
  68. Parikh, R. (2003). Levels of knowledge, games, and group action. Logic and the Foundations of the Theory of Games and Decisions, 57(3), 267–281.Google Scholar
  69. Parikh, R. (2006). Modal logic and possible worlds. In H. Lagerlund, S. Lindstrm, & R. Sliwinski (Eds.), Modality matters: Twenty-five essays in honour of Krister Segerberg, Uppsala Philosophical Studies 53 (pp. 53–339). Google Scholar
  70. Parikh, R. (2007). Game theory: 5 questions. In V. F. Hendricks & P. G. Hansen (Eds.), Epistemology: 5 Questions (pp. 145–153). New York: Automatic Press/VIP.Google Scholar
  71. Parikh, R. (2008). Sentences, belief and logical omniscience, or what does deduction tell us? Review of Symbolic Logic, 1(4), 459–476.CrossRefGoogle Scholar
  72. Parikh, R. (2009a). From language games to social software. Manuscript. April 16, 2009.Google Scholar
  73. Parikh, R. (2009b). Knowledge, games and tales from the east. In R. Ramanujan & S. Sarukkai (Eds.), ICLA 2009, LNAI 5378 (pp. 65–76). Berlin: Springer.Google Scholar
  74. Parikh, R. (2013). On Kripke’s puzzle about time and thought. In K. Lodaya (Ed.), Logic and its applications (pp. 121–126). Berlin: Springer.CrossRefGoogle Scholar
  75. Parikh, R. (forthcoming). Is there a church-turing thesis for social algorithms? In J. Floyd & A. Bokulich (Eds.), (forthcoming).Google Scholar
  76. Parikh, R., & Ramanujam, R. (2003). A knowledge based semantics of messages. Journal of Logic, Language and Information, 12(4), 453–467.CrossRefGoogle Scholar
  77. Parikh, R., & Renero, A. (forthcoming). Justified True Belief: Plato, Gettier and Turing. In J. Floyd & A. Bokulich (Eds.), (forthcoming).Google Scholar
  78. Parikh, R., & Väänänen, J. (2005). Finite information logic. Annals of Pure and Applied Logic, 134(1), 83–93.CrossRefGoogle Scholar
  79. Putnam, H. (1975). The Meaning of “Meaning”. In K. Gunderson (Ed.), Language, mind and knowledge. Minnesota Studies in the Philosophy of Science, (Vol. 7, pp. 131–193). Minneapolis: University of Minnesota Press. Reprinted in Mind, language and reality: Philosophical papers (Vol. 2, pp. 215–271). New York: Cambridge University Press (1975).Google Scholar
  80. Putnam, H. (1979). Philosophy of mathematics: Why nothing works. In H. Putnam, & J. Conant, (Eds.), Words and life (pp. 499–512). Cambridge, MA: Harvard University Press. Originally published in Current research in philosophy of science: Proceedings of the P.S.A. critical research problems conference, P.D. Asquith & Henry Kyburg, Jr. (Eds.). East Lansing: Philosophy of Science Association (1979).Google Scholar
  81. Putnam, H. (1999). The threefold cord: Mind, body, and world. New York: Columbia University Press.Google Scholar
  82. Putnam, H. (2002). Travis on meaning, thought and the ways the world is. The Philosophical Quarterly, 52(206), 96–106.CrossRefGoogle Scholar
  83. Quine, W. V. (1984). Relativism and absolutism. The Monist, 67(3), 293–296.CrossRefGoogle Scholar
  84. Quine, W. V. (1960). Word and object. Cambridge, MA: Harvard University Press.Google Scholar
  85. Russell, B. (1912). The problems of philosophy, Home university library of modern knowledge, 40. London: Oxford University Press.Google Scholar
  86. Russell, B. (1921). The analysis of mind. London, New York: G. Allen and Unwin Ltd.; The Macmillan company.Google Scholar
  87. Russell, B. (1940). An inquiry into meaning and truth. New York: W. W. Norton & Company Inc.Google Scholar
  88. Sazonov, V. Y. (1995). On feasible numbers. In D. Leivant (Ed.), Logic and computational complexity international workshop LCC ’94 Indianapolis, IN, USA, October 1316, 1994 Selected Papers Lecture Notes in Computer Science (Vol. 960, pp. 30–51). New York: Springer.Google Scholar
  89. Searle, J. R. (1984). Minds, brains and science. Cambridge, MA: Harvard University Press.Google Scholar
  90. Searle, J. R. (2010). Making the social world: The structure of human civilization. Oxford: Oxford University Press.CrossRefGoogle Scholar
  91. Shanker, S. G. (1998). Wittgenstein’s remarks on the foundations of AI. New York: Routledge.Google Scholar
  92. Sieg, W. (2007). On mind and Turing’s machines. Natural Computing, 6, 187–205.CrossRefGoogle Scholar
  93. Sieg, W. (2008). Church without dogma: Axioms for computability. In B. S. Cooper, B. Löwe, & A. Sorbi (Eds.), New computational paradigms: Changing conceptions of what is computable (pp. 139–152). New York: Springer.CrossRefGoogle Scholar
  94. Soulez, A. (2005). A case of early Wittgensteinian dialogism: Stances on the impossibility of “red and green in the same place”. In A. Pichler & S. Säätelä, (Eds.), Wittgenstein: The Philosopher and his works (pp. 313–325). Working Papers from the Wittgenstein Archives at the University of Bergen. University of Bergen.Google Scholar
  95. Stenlund, S. (1996). Poincaré and the Limits of Formal Logic. In J.-L. Greffe, G. Heinzmann, & K. Lotenz (Eds.), Henri Poincaré, Science and Philosophy, International Congress, Nancy, France 1994 (pp. 467–479). Berlin/Paris: Akademie Verlag/Albert Blanchard.Google Scholar
  96. Stern, D. (2005). How many Wittgensteins? In A. Pichler, & S. Säätelä (Eds.), Wittgenstein: The philosopher and his works (pp. 164–188). Working Papers from the Wittgenstein Archives at the University of Bergen. University of Bergen.Google Scholar
  97. Sterrett, S. G. (2012). Bringing up Turing’s ‘Child-Machine’. In S. B. Cooper, A. Dawar, & B. Löwe, (Eds.), How the world computes: Turing centenary conference and 8th conference on computability in Europe, CiE 2012, Cambridge, UK, June 18–23, 2012, proceedings (pp. 703–713).Google Scholar
  98. Sterrett, S. G., (forthcoming). Alan Turing on the integration of machine and human intellectual power. In A. Bokulich & J. Floyd (Eds.), (forthcoming).Google Scholar
  99. Travis, C. (1995). Order out of messes, review of Akeel Bilgrami, Belief and Meaning. Mind, 104, 133–144.Google Scholar
  100. Travis, C. (2005). A sense of occasion. The Philosophical Quarterly, 55(219), 286–314.CrossRefGoogle Scholar
  101. Travis, C. (2006). Thought’s footing. New York: Oxford University Press.CrossRefGoogle Scholar
  102. Travis, C. (2008). Occasion-sensitivity: Selected essays. Oxford: Oxford University Press.CrossRefGoogle Scholar
  103. Travis, C. (2013). Perception: Essays after Frege. Oxford: Oxford University Press.CrossRefGoogle Scholar
  104. Turing, A. M. (1937). Correspondence with Paul Bernays. ETH-Bibliothek, Archive, Zürich, Hs 947: 276. Hs, 975, 4616–4617.Google Scholar
  105. Turing, A. M. (1948/1992). Intelligent machinery. In D. C. Ince (Ed.), Collected works of A.M. Turing: Mechanical intelligence. Amsterdam: North-Holland, pp. 107–128.Google Scholar
  106. Turing, A. M. (1936/1937). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 2(42), 230–265.Google Scholar
  107. Turing, A. M. (1944–1945). The reform of mathematical notation and phraseology. In R. O. Gandy & C. E. M. Yates (Eds.), The collected works of A.M. Turing: Mathematical logic (pp. 211–222). Amsterdam: North-Holland/Elsevier Science.Google Scholar
  108. Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433–460.CrossRefGoogle Scholar
  109. Wang, H. (1961). Process and existence in mathematics. In Y. Bar-Hillel, E. I. J. Poznanski, M. O. Rabin, & A. Robinson (Eds.), Essays on the foundations of mathematics, dedicated to Prof. A. A. Fraenkel on his 70th anniversary (pp. 328–351). Jerusalem: Magnes Press, the Hebrew University of Jerusalem.Google Scholar
  110. Wang, H. (1974). From mathematics to philosophy. International library of philosophy and scientific method. New York: Humanities Press.Google Scholar
  111. Wang, H. (1996). A logical journey: From Gödel to philosophy. Cambridge, MA: The MIT Press.Google Scholar
  112. Webb, J. (1990). Introductory Note to Gödel 1972a. In S. Feferman, et al. (Eds.), Kurt Gödel collected works: Vol. II, Publications, 1938–1974 (pp. 292–304). New York: Oxford University Press.Google Scholar
  113. Williams, M. (1999). Wittgenstein, mind, and meaning: Toward a social conception of mind. London: Routledge.CrossRefGoogle Scholar
  114. Williams, M. (2009). Blind obedience: The structure and content of Wittgenstein’s later philosophy. London: Routledge.Google Scholar
  115. Winch, P. (2008). The idea of a social science and its relation to philosophy. London: Routledge classics, Routledge.Google Scholar
  116. Wittgenstein, L. (1978). Remarks on the foundations of mathematics (revised ed.). Cambridge, MA: M. I. T. Press.Google Scholar
  117. Wittgenstein, L. (2005). Ludwig Wittgenstein: Gesamtbriefwechsel/Complete Correspondence. Electronic Edition. Oxford University Press/Bergen University Wittgenstein Archives.Google Scholar
  118. Wittgenstein, L. (2009). Philosophische Untersuchungen = Philosophical investigations, rev. 4th ed. (trans: G. E. M. Anscombe, P.M.S. Hacker, & J. Schulte). Chichester: Wiley-Blackwell.Google Scholar
  119. Wittgenstein, L., Anscombe, G. E. M., & von Wright, G. H. (1980). Remarks on the philosophy of psychology (Vol. 1). Oxford: Blackwell.Google Scholar
  120. Wright, C. (1980). Wittgenstein on the foundations of mathematics. Cambridge: Harvard University Press.Google Scholar
  121. Wright, C. (1993). Strict finitism. Realism, meaning and truth (2nd ed., pp. 107–175). Oxford: Blackwell.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhilosophyBoston UniversityBostonUSA

Personalised recommendations