Skip to main content

Self-assembly Thin Films for Sensing

  • Chapter
  • First Online:
Materials for Chemical Sensing

Abstract

The ability to control properties of nanomaterials by immobilization on a substrate of interest through Layer-by-Layer (LbL) and Langmuir-Blodgett (LB) techniques have drawn attention among many researchers. The molecular level control achieved by the LB and LbL techniques in coating surfaces can be explored in different areas, as energy generation and storage, environmental, clinical analysis, among others. We focus on three materials of great importance in the development of sensors in recent decades: metallic nanoparticles, graphene and carbon nanotubes based materials. In this chapter, the LB and LbL techniques are briefly discussed. The state-of-the-art of metal nanoparticles, graphene, and carbon nanotubes based materials in such films focusing sensing applications are summarized in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petty MC (1996) Langmuir-Blodgett films: an introduction, 1st edn. Cambridge University Press, New York

    Book  Google Scholar 

  2. Ulman A (1991) An introduction to ultrathin organic films: from Langmuir-Blodgett to self-assembly, 1st edn. Academic Press, San Diego

    Google Scholar 

  3. Ariga K, Yamauchi Y, Mori T, Hill JP (2013) 25th anniversary article: What can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. Adv Mater 25:6477–6512

    Article  Google Scholar 

  4. Acharya S, Hill JP, Ariga K (2009) Soft Langmuir-Blodgett technique for hard nanomaterials. Adv Mater 21:2959–2981

    Article  Google Scholar 

  5. Mandal S, Lee MV, Hill JP et al (2010) Recent developments in supramolecular approach for nanocomposites. J Nanosci Nanotechnol 10:21–33

    Article  Google Scholar 

  6. de Oliveira RF, Xavier ACF, de Barros A, Ferreira M (2015) Filmes Nanoestruturados: Técnicas de Langmuir-Blodgett (LB) e Layer-by-Layer (LbL). In: Da Róz AL, Leite FL, Ferreira M, Oliveira ON Jr (eds) Nanoestruturas Princípios E Apl, 1st edn. Elsevier, Rio de Janeiro, pp 121–140

    Chapter  Google Scholar 

  7. Kato N, Sasaki T, Mukai Y (2015) Partially induced transition from horizontal to vertical orientation of helical peptides at the air–water interface and the structure of their monolayers transferred on the solid substrates. Biochim Biophys Acta BBA—Biomembr 1848:967–975

    Article  Google Scholar 

  8. Togashi K, Iizuka T, Kato N et al (2012) Fabrication of Langmuir-Blodgett films using amphiphilic peptides. J Nanosci Nanotechnol 12:568–572

    Article  Google Scholar 

  9. Caseli L, Siqueira JR (2012) High enzymatic activity preservation with carbon nanotubes incorporated in urease-lipid hybrid Langmuir-Blodgett films. Langmuir 28:5398–5403

    Article  Google Scholar 

  10. Goto TE, Lopez RF, Oliveira ON, Caseli L (2010) Enzyme activity of catalase immobilized in Langmuir-Blodgett films of phospholipids. Langmuir 26:11135–11139

    Article  Google Scholar 

  11. Hidalgo RS, López-Díaz D, Velázquez MM (2015) Graphene oxide thin films: influence of chemical structure and deposition methodology. Langmuir 31:2697–2705

    Article  Google Scholar 

  12. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210–211(Part 2):831–835

    Article  Google Scholar 

  13. Schönhoff M (2003) Layered polyelectrolyte complexes: physics of formation and molecular properties. J Phys: Condens Matter 15:R1781–R1808

    Google Scholar 

  14. Wang D, Wang X (2011) Self-assembled graphene/azo polyelectrolyte multilayer film and its application in electrochemical energy storage device. Langmuir 27:2007–2013

    Article  Google Scholar 

  15. Almeida TP, Miyazaki CM, Paganin VA et al (2014) PEDOT:PSS self-assembled films to methanol crossover reduction in Nafion® membranes. Appl Surf Sci 323:7–12

    Article  Google Scholar 

  16. Jiang SP, Liu Z, Tian ZQ (2006) Layer-by-layer self-assembly of composite polyelectrolyte-Nafion membranes for direct methanol fuel cells. Adv Mater 18:1068–1072

    Article  Google Scholar 

  17. Riul Jr A, Miyazaki CM, Dantas CAR, Oliveira Jr ON (2013) The use of nanostructured films in sensing applications. In: Multisens Syst Chem Anal Mater Sens. CRC Press, Boca Raton, p 408

    Google Scholar 

  18. Crespilho FN, Zucolotto V, Oliveira ON Jr, Nart FC (2006) Electrochemistry of layer-by-layer films: a review. Int J Electrochem Sci 1:194–214

    Google Scholar 

  19. Ariga K, Yamauchi Y, Rydzek G et al (2014) Layer-by-layer nanoarchitectonics: invention, innovation, and evolution. Chem Lett 43:36–68

    Article  Google Scholar 

  20. Richardson JJ, Bjornmalm M, Caruso F (2015) Technology-driven layer-by-layer assembly of nanofilms. Science 348:2491–2491

    Google Scholar 

  21. Saetia K, Schnorr JM, Mannarino MM et al (2014) Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for flexible chemiresistive sensor applications. Adv Funct Mater 24:492–502

    Article  Google Scholar 

  22. Daikuzono CM, Dantas CAR, Volpati D et al (2015) Microfluidic electronic tongue. Sens Actuators B Chem 207:1129–1135

    Article  Google Scholar 

  23. Lavenn C, Albrieux F, Tuel A, Demessence A (2014) Synthesis, characterization and optical properties of an amino-functionalized gold thiolate cluster: Au10(SPh-pNH2)10. J Colloid Interf Sci 418:234–239

    Article  Google Scholar 

  24. Dochter A, Pichon BP, Fleutot S et al (2013) A multiscale structural study of nanoparticle films prepared by the Langmuir-Blodgett technique. Solid State Sci 16:81–89

    Article  Google Scholar 

  25. Zou L, Li Y, Cao S, Ye B (2013) Gold nanoparticles/polyaniline Langmuir-Blodgett film modified glassy carbon electrode as voltammetric sensor for detection of epinephrine and uric acid. Talanta 117:333–337

    Article  Google Scholar 

  26. Medina-Plaza C, Furini LN, Constantino CJL et al (2014) Synergistic electrocatalytic effect of nanostructured mixed films formed by functionalised gold nanoparticles and bisphthalocyanines. Anal Chim Acta 851:95–102

    Article  Google Scholar 

  27. Medina-Plaza C, García-Cabezón C, García-Hernández C et al (2015) Analysis of organic acids and phenols of interest in the wine industry using Langmuir-Blodgett films based on functionalized nanoparticles. Anal Chim Acta 853:572–578

    Article  Google Scholar 

  28. Matharu Z, Pandey P, Pandey MK et al (2009) Functionalized gold nanoparticles—octadecylamine hybrid Langmuir-Blodgett film for enzyme sensor. Electroanalysis 21:1587–1596

    Article  Google Scholar 

  29. Chen S, Yuan R, Chai Y, Hu F (2012) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32

    Article  Google Scholar 

  30. Raguse B, Chow E, Barton CS, Wieczorek L (2007) Gold nanoparticle chemiresistor sensors: direct sensing of organics in aqueous electrolyte solution. Anal Chem 79:7333–7339

    Article  Google Scholar 

  31. Chen X, Yang X, Fu W et al (2013) Enhanced performance of polymer solar cells with a monolayer of assembled gold nanoparticle films fabricated by Langmuir-Blodgett technique. Mater Sci Eng, B 178:53–59

    Article  Google Scholar 

  32. Zhavnerko G, Marletta G (2010) Developing Langmuir-Blodgett strategies towards practical devices. Mater Sci Eng, B 169:43–48

    Article  Google Scholar 

  33. Guo W, Pi Y, Song H et al (2012) Layer-by-layer assembled gold nanoparticles modified anode and its application in microbial fuel cells. Colloids Surf Physicochem Eng Asp 415:105–111

    Article  Google Scholar 

  34. Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2:282–289

    Article  Google Scholar 

  35. Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25:13840–13851

    Article  Google Scholar 

  36. Ghosh P, Han G, De M et al (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    Article  Google Scholar 

  37. Ding L, Bond AM, Zhai J, Zhang J (2013) Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review. Anal Chim Acta 797:1–12

    Article  Google Scholar 

  38. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  Google Scholar 

  39. Cao G (2004) Zero-dimensional nanostructures: nanoparticles. Nanostructures and nanomaterials: synthesis, properties and applications. College Press, London, pp 51–109

    Chapter  Google Scholar 

  40. Klabunde KJ (2001) Introduction to nanotechnology. In: Klabunde KJ (ed) Nanoscale materials in chemistry. John Wiley & Sons Inc, Hoboken, pp 1–13

    Chapter  Google Scholar 

  41. Samanman S, Kanatharana P, Asawatreratanakul P, Thavarungkul P (2012) Characterization and application of self-assembled layer by layer gold nanoparticles for highly sensitive label-free capacitive immunosensing. Electrochim Acta 80:202–212

    Article  Google Scholar 

  42. Li Y, Cheng P, Gong J et al (2012) Amperometric immunosensor for the detection of Escherichia coli O157:H7 in food specimens. Anal Biochem 421:227–233. doi:10.1016/j.ab.2011.10.049

    Article  Google Scholar 

  43. Ou C, Yuan R, Chai Y et al (2007) A novel amperometric immunosensor based on layer-by-layer assembly of gold nanoparticles–multi-walled carbon nanotubes-thionine multilayer films on polyelectrolyte surface. Anal Chim Acta 603:205–213

    Article  Google Scholar 

  44. Xu G, Yang L, Zhong M et al (2013) Selective recognition and electrochemical detection of p-nitrophenol based on a macroporous imprinted polymer containing gold nanoparticles. Microchim Acta 180:1461–1469

    Article  Google Scholar 

  45. Challier L, Gal F, Carrot G et al (2013) Hybrid platinum nanoparticle ensemble for the electrocatalytic oxidation of H2O2: toward nanostructured biosensor design. Electrochem Commun 28:118–121

    Article  Google Scholar 

  46. Liu S, Ju H (2003) Electrocatalysis via direct electrochemistry of myoglobin immobilized on colloidal gold nanoparticles. Electroanalysis 15:1488–1493

    Article  Google Scholar 

  47. Zhao S, Zhang K, Bai Y et al (2006) Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: direct electron transfer and electrocatalysis. Bioelectrochemistry 69:158–163

    Article  Google Scholar 

  48. Yi X, Huang-Xian J, Hong-Yuan C (2000) Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode. Anal Biochem 278:22–28

    Article  Google Scholar 

  49. de Barros A, Ferreira M, Constantino CJL et al (2015) Synergy between polyaniline and OMt clay mineral in Langmuir-Blodgett films for the simultaneous detection of traces of metal ions. ACS Appl Mater Interfaces 7:6828–6834

    Article  Google Scholar 

  50. Barros A (2015) Filmes de Nanocompósitos de Polímero Condutor, Nanopartículas de Argila e Nanopartículas de Ouro para Aplicação em Sensores Ambientais. Tese de doutorado, Universidade Estadual Paulista

    Google Scholar 

  51. Jayaraman S, Yu LT, Srinivasan MP (2013) Polythiophene–gold nanoparticle hybrid systems: Langmuir-Blodgett assembly of nanostructured films. Nanoscale 5:2974–2982

    Article  Google Scholar 

  52. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48:2127–2150

    Article  Google Scholar 

  53. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  Google Scholar 

  54. Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024

    Article  Google Scholar 

  55. Zhang J, Zhang F, Yang H et al (2010) Graphene oxide as a matrix for enzyme immobilization. Langmuir 26:6083–6085

    Article  Google Scholar 

  56. Liu Y, Yu D, Zeng C et al (2010) Biocompatible graphene oxide-based glucose biosensors. Langmuir 26:6158–6160

    Article  Google Scholar 

  57. Du D, Wang L, Shao Y et al (2011) Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392). Anal Chem 83:746–752

    Article  Google Scholar 

  58. Wu M, Kempaiah R, Huang P-JJ et al (2011) Adsorption and desorption of dna on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 27:2731–2738

    Article  Google Scholar 

  59. Liu X, Zhu H, Yang X (2011) An amperometric hydrogen peroxide chemical sensor based on graphene-Fe3O4 multilayer films modified ITO electrode. Talanta 87:243–248

    Article  Google Scholar 

  60. Cao X, Ye Y, Li Y et al (2013) Self-assembled glucose oxidase/graphene/gold ternary nanocomposites for direct electrochemistry and electrocatalysis. J Electroanal Chem 697:10–14

    Article  Google Scholar 

  61. Weng X, Cao Q, Liang L et al (2013) Simultaneous determination of dopamine and uric acid using layer-by-layer graphene and chitosan assembled multilayer films. Talanta 117:359–365

    Article  Google Scholar 

  62. Liu S, Yan J, He G et al (2012) Layer-by-layer assembled multilayer films of reduced graphene oxide/gold nanoparticles for the electrochemical detection of dopamine. J Electroanal Chem 672:40–44

    Article  Google Scholar 

  63. Liu Y, Liu Y, Feng H et al (2012) Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay. Biosens Bioelectron 35:63–68

    Article  Google Scholar 

  64. Cote LJ, Kim F, Huang J (2009) Langmuir-Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043–1049

    Article  Google Scholar 

  65. Jia B, Zou L (2013) Langmuir-Blodgett assembly of sulphonated graphene nanosheets into single- and multi-layered thin films. Chem Phys Lett 568–569:101–105

    Article  Google Scholar 

  66. Wen J, Jiang Y, Yang Y, Li S (2013) Conducting polymer and reduced graphene oxide Langmuir-Blodgett films: a hybrid nanostructure for high performance electrode applications. J Mater Sci: Mater Electron 25:1063–1071

    Google Scholar 

  67. Kumar V, Bahadur N, Sachdev D et al (2014) Restructural confirmation and photocatalytic applications of graphene oxide–gold composites synthesized by Langmuir-Blodgett method. Carbon 80:290–304

    Article  Google Scholar 

  68. Yin Z, He Q, Huang X et al (2011) Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors. Nanoscale 4:293–297

    Article  Google Scholar 

  69. Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  Google Scholar 

  70. Rivas GA, Rubianes MD, Rodríguez MC et al (2007) Carbon nanotubes for electrochemical biosensing. Talanta 74:291–307

    Article  Google Scholar 

  71. Ajayan PM (1999) Nanotubes from Carbon. Chem Rev 99:1787–1800

    Article  Google Scholar 

  72. Gharbavi K, Badehian H (2014) Structural and electronic properties of armchair (7, 7) carbon nanotubes using DFT. Comput Mater Sci 82:159–164

    Article  Google Scholar 

  73. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297:787–792

    Article  Google Scholar 

  74. Zhao Q, Gan Z, Zhuang Q (2002) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14:1609–1613

    Article  Google Scholar 

  75. Wu B-Y, Hou S-H, Yin F et al (2007) Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode. Biosens Bioelectron 22:2854–2860

    Article  Google Scholar 

  76. Sun P, Jiang Y, Xie G et al (2011) Layer-by-layer assembly carbon nanotubes thin film based gas sensors for ammonia detection. Sci China Inf Sci 54:2680–2686

    Article  Google Scholar 

  77. Jing H, Jiang Y, Du X et al (2012) Humidity sensing properties of different single-walled carbon nanotube composite films fabricated by layer-by-layer self-assembly technique. Appl Phys A 109:111–118

    Article  Google Scholar 

  78. Sun Y, Ren Q, Liu X et al (2013) A simple route to fabricate controllable and stable multilayered all-MWNTs films and their applications for the detection of NADH at low potentials. Biosens Bioelectron 39:289–295

    Article  Google Scholar 

  79. Poonia M, Manjuladevi V, Gupta RK et al (2015) Ultrathin films of single-walled carbon nanotubes: a potential methane gas sensor. Sci Adv Mater 7:455–462

    Article  Google Scholar 

  80. Wang L, Li Y, Li G, Ye B (2015) A new strategy for enhancing electrochemical sensing from MWCNTs modified electrode with Langmuir-Blodgett film and used in determination of methylparaben. Sens Actuators B Chem 211:332–338

    Article  Google Scholar 

  81. Takezawa A, Nara R, Kushida M (2014) Control of Fe catalyst nanoparticle density for carbon nanotube growth using Langmuir-Blodgett deposition of mixtures of Fe nanoparticles and arachidic acid. Thin Solid Films 554:69–73

    Article  Google Scholar 

  82. Iakoubovskii K (2009) Techniques of aligning carbon nanotubes. Cent Eur J Phys 7:645–653

    Google Scholar 

  83. Venet C, Pearson C, Jombert AS et al (2010) The morphology and electrical conductivity of single-wall carbon nanotube thin films prepared by the Langmuir-Blodgett technique. Colloids Surf Physicochem Eng Asp 354:113–117

    Article  Google Scholar 

  84. Lee J-H, Kang W-S, Najeeb CK et al (2013) A hydrogen gas sensor using single-walled carbon nanotube Langmuir-Blodgett films decorated with palladium nanoparticles. Sens Actuators B Chem 188:169–175

    Article  Google Scholar 

  85. Fu Y-R, Zhang S, Chen M, Qian D-J (2012) Morphology and electrochemical properties of amphiphilic viologen functionalized multiwalled carbon nanotube hybrids in Langmuir-Blodgett films. Thin Solid Films 520:6994–7001

    Article  Google Scholar 

  86. Lo C-L, Lee Y-L, Hsu W-P (2010) Behavior of mixed multi-walled carbon nanotube/P3HT monolayer at the air/water interface. Synth Met 160:2219–2223

    Article  Google Scholar 

  87. Sun Q, Zorin NA, Chen D et al (2010) Langmuir-Blodgett films of pyridyldithio-modified multiwalled carbon nanotubes as a support to immobilize hydrogenase. Langmuir 26:10259–10265

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of FAPESP, CNPq, CAPES, and nBioNet network (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marystela Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Miyazaki, C.M., de Barros, A., Mascagni, D.B.T., Graça, J.S., Campos, P.P., Ferreira, M. (2017). Self-assembly Thin Films for Sensing. In: Cesar Paixão, T., Reddy, S. (eds) Materials for Chemical Sensing. Springer, Cham. https://doi.org/10.1007/978-3-319-47835-7_7

Download citation

Publish with us

Policies and ethics