Association Mapping and Genomic Selection—Where Does Sorghum Stand?

Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Sorghum is cultivated as a staple cereal crop in the semi-arid regions of the world. Because of its drought-tolerance ability and high biomass production, it is preferred over other crops for fodder production. In addition to its use as fodder, it is also being used as a bioenergy crop as well as a sugar crop in sweet sorghum. In the last few years, because of advances in genomic techniques, large numbers of molecular markers have been developed in sorghum, which has enabled identification of several quantitative trait loci (QTLs) for various traits using different biparental mapping populations. However, deployment of these identified QTLs in a sorghum improvement program is still lacking as the genetic background in which they were identified does not always represent the breeding program. In recent years the newer approaches of quantitative genetics including association mapping (AM) and genomic selection (GS) has not only facilitated identification of QTLs in diverse genetic backgrounds but also the utilization of all these QTLs in genomic prediction in many crops. This has become possible due to the advancements in the area of computational biology. However, despite the availability of large genomic resources, the progress made in terms of numbers of studies related to AM and GS in sorghum are few, which is in contrast to the situation in other crops such as maize, wheat, and rice. This offers the opportunity for the application of these techniques in a sorghum improvement program. The progress made thus far and the scope available for the use of these two approaches in sorghum is discussed in detail in this chapter.

Keywords

Association mapping Linkage disequilibrium GWAS QTL MAS 

References

  1. Bekele WA, Wieckhorst S, Friedt W, Snowdon RJ (2013) High-throughput genomics in sorghum: from whole genome resequencing to a SNP screening array. Plant Biotechnol J 11:1112–1125CrossRefPubMedGoogle Scholar
  2. Bentley AR, Scutari M, Gosman N, Faure S, Bedford F et al (2014) Applying association mapping and genomic selection to the dissection of key traits in elite European wheat. Theor Appl Genet 127:2619–2633CrossRefPubMedGoogle Scholar
  3. Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative trait in maize. Crop Sci 47:1082–1090CrossRefGoogle Scholar
  4. Besufekad Y, Bantte K (2013) Evaluation and association mapping for drought tolerance in sorghum [Sorghum bicolor (L.) Moench]. Glob J Sci Front Res Agric Vet 13:49–54Google Scholar
  5. Bhosale SU, Stich B, Rattunde HFW, Weltzien E, Haussmann BIG et al (2012) Association analysis of photoperiodic flowering time genes in west and central African sorghum [Sorghum bicolor (L.) Moench]. BMC Plant Biol 12:32CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bouchet S, Pot D, Deu M, Rami J-F, Billot C et al (2012) Genetic structure, linkage disequilibrium and signature of selection in sorghum: lessons from physically anchored DArT markers. PLoS ONE 7(3):e33470CrossRefPubMedPubMedCentralGoogle Scholar
  7. Caniato FF, Guimaraes CT, Hamblin M, Billot C, Rami J-F et al (2011) The relationship between population structure and aluminum tolerance in cultivated sorghum. PLoS ONE 6(6):e20830CrossRefPubMedPubMedCentralGoogle Scholar
  8. Caniato FF, Hamblin MT, Guimaraes CT, Zhang Z, Schaffert RE et al (2014) Association mapping provides insights into the origin and the fine structure of the sorghum aluminum tolerance locus, Alt SB. PLoS ONE 9(1):e87438. doi: 10.1371/journal.pone.0087438 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Casa AM, Pressoir G, Brown PJ, Mitchell SE, Rooney WL, Tuinstra MR, Franks CD, Kresovich S (2008) Community resources and strategies for association mapping in sorghum. Crop Sci 48:30–40CrossRefGoogle Scholar
  10. Crossa J, Campos de Los G, Perez P, Gianola D, Burgueno J, et al. (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724Google Scholar
  11. Crossa J, Perez P, Hickey J, Burgueno J, Ornella L, Ceron-Rojas J, Zhang X, Dreisigacker S, Babu R, Li Y, Bonnett D, Mathews K (2014) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112:48–60CrossRefPubMedGoogle Scholar
  12. Dahlberg JA, Burke JJ, Rosenow DT (2004) Development of a sorghum core collection: refinement and evaluation of a subset from Sudan. Econ Bot 58:556–567CrossRefGoogle Scholar
  13. Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3:22–32CrossRefPubMedGoogle Scholar
  14. Desta ZA, Ortiz R (2014) Genomic selection: genome wide prediction in plant improvement. Trends Plant Sci 19:592–601CrossRefPubMedGoogle Scholar
  15. Franks CD, Mayor MLM (2014) Molecular breeding. In: Wang Y-H, Upadhyaya HD, Kole C (eds) Genetics, genomics and breeding of sorghum. CRC Press, Boca Raton (USA), London (UK), New York (USA), pp 169–181Google Scholar
  16. Gupta PK, Kulwal PL, Mir RR (2013) QTL mapping: methodology and applications in cereal breeding. In: Gupta PK, Varshney RK (eds) Cereal genomics II. Springer, Dordrecht, The Netherlands, pp 275–318CrossRefGoogle Scholar
  17. Gupta PK, Kulwal PL, Jaiswal V (2014) Association mapping in crop plants: opportunities and challenges. Adv Genet 85:109–147PubMedGoogle Scholar
  18. Hayes B, Goddard ME (2010) Genome-wide association and genomic selection in animal breeding. Genome 53:876–883CrossRefPubMedGoogle Scholar
  19. Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12CrossRefGoogle Scholar
  20. Hickey JM, Dreisigacker S, Crossa J, Hearne S, Babu R et al (2014) Evaluation of genomic selection training population designs and genotyping strategies in plant breeding programs using simulation. Crop Sci 54:1476–1488CrossRefGoogle Scholar
  21. Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genom 9:166–177CrossRefGoogle Scholar
  22. Jordan DR, Maceb ES, Cruickshank AW, Hunt CH, Henzell RG (2011) Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Sci 51:1444–1457CrossRefGoogle Scholar
  23. Kulwal PL, Mahendar T, Varshney RK (2012a) Genomics interventions in crop breeding for sustainable agriculture. Encyclo Sustain Sci Technol 1:2527–2540CrossRefGoogle Scholar
  24. Kulwal P, Ishikawa G, Benscher D, Feng Z, Yu L-X, Jadhav A, Mehetre S, Sorrells ME (2012b) Association mapping for pre-harvest sprouting resistance in white winter wheat. Theor Appl Genet 125:793–805CrossRefPubMedGoogle Scholar
  25. Lado B, Matus I, Rodríguez A, Inostroza L, Poland J, Belzile F, del Pozo A, Quincke M, von Zitzewitz J (2014) Increased genomic prediction accuracy in wheat breeding through spatial adjustment of field trial data. G3: genes genomes genet. doi: 10.1534/g3.113.007807
  26. Lv P, Ji G, Han Y, Hou S, Li S, Ma X, Du R, Liu G (2013) Association analysis of sugar yield-related traits in sorghum [Sorghum bicolor (L.)]. Euphytica 193:419–431CrossRefGoogle Scholar
  27. Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ et al (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320. doi: 10.1038/ncomms3320 PubMedPubMedCentralGoogle Scholar
  28. Mantilla Perez MB, Zhao J, Yin Y, Hu J, Salas Fernandez MG (2014) Association mapping of brassinosteroid candidate genes and plant architecture in a diverse panel of Sorghum bicolor. Theor Appl Genet 127:2645–2662CrossRefPubMedGoogle Scholar
  29. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic values using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  30. Michelmore WR, Paran I, Kesseli RV (1991) Identification of marker linked to disease resistance genes by bulked segregant analysis, a rapid method to detect the markers in specific genetic region by using the segregating population. Proc Natl Acad Sci USA 88:9828–9983CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mohamed A, Ali R, Elhassan O, Suliman E, Mugoya C, Masiga CW, Elhusien A, Hash CT (2014) First products of DNA marker-assisted selection in sorghum released for cultivation by farmers in sub-Saharan Africa. J Plant Sci Mol Breed 3. doi: 10.7243/2050-2389-3-3
  32. Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Lizarazu OR, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013a) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110:453–458CrossRefPubMedGoogle Scholar
  33. Morris GP, Rhodes DH, Brenton Z, Ramu P, Thayil VM, Deshpande S, Hash CT, Acharya C, Mitchell SE, Buckler ES, Yu J, Kresovich S (2013b) Dissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traits. G3: genes genomes genet 3:2085–2094Google Scholar
  34. Murray SC, Rooney WL, Hamblin MT, Mitchell SE, Kresovich S (2009) Sweet sorghum genetic diversity and association mapping for brix and height. Plant Genome 2:48–62CrossRefGoogle Scholar
  35. Nicholas FW (2006) Discovery, validation and delivery of DNA markers. Aust J Exp Agri 46:155–158CrossRefGoogle Scholar
  36. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J et al (2009) The sorghum bicolor genome and the diversification of grasses. Nature 457:551–556CrossRefPubMedGoogle Scholar
  37. Piepho HP (2009) Ridge regression and extensions for genome wide selection in maize. Crop Sci 49:1165–1176CrossRefGoogle Scholar
  38. Poland J, Endelman J, Dawson J, Rutkoski J et al (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113CrossRefGoogle Scholar
  39. Reddy NRR, Madhusudhana R, Murali Mohan S, Seetharama N, Patil JV (2014) Detection and validation of stay-green QTL in post-rainy sorghum involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35. BMC Genom 15:909CrossRefGoogle Scholar
  40. Rhodes DH, Hoffmann L Jr, Rooney WL, Ramu P, Morris GP, Kresovich S (2014) Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) Moench] germplasm. J Agric Food Chem 62:10916–10927CrossRefPubMedGoogle Scholar
  41. Sallam AH, Endelman JB, Jannink J-L, Smith KP (2015) Assessing genomic selection prediction accuracy in a dynamic barley breeding population. Plant genome 8. doi: 10.3835/plantgenome2014.05.0020
  42. Shehzad T, Iwata H, Okuno K (2009) Genome-wide association mapping of quantitative traits in sorghum (Sorghum bicolor (L.) Moench) by using multiple models. Breed Sci 59:217–227CrossRefGoogle Scholar
  43. Sukumaran S, Xiang W, Bean SR, Pedersen JF, Kresovich S, Tuinstra MR, Tesso TT, Hamblin MT, Yu J (2012) Association mapping for grain quality in a diverse sorghum collection. Plant Genome 5:126–135CrossRefGoogle Scholar
  44. Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49:1769–1780CrossRefGoogle Scholar
  45. Upadhyaya HD, Wang Y-H, Sharma S, Singh S (2012a) Association mapping of height and maturity across five environments using the sorghum mini core collection. Genome 55:471–479CrossRefPubMedGoogle Scholar
  46. Upadhyaya HD, Wang Y-H, Sharma S, Singh S, Hasenstein KH (2012b) SSR markers linked to kernel weight and tiller number in sorghum identified by association mapping. Euphytica 187:401–410CrossRefGoogle Scholar
  47. Upadhyaya HD, Wang Y-H, Gowda CLL, Sharma S (2013a) Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. Theor Appl Genet 126:2003–2015CrossRefPubMedGoogle Scholar
  48. Upadhyaya HD, Wang Y-H, Sharma R, Sharma S (2013b) Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis. Theor Appl Genet 126:1649–1657CrossRefPubMedGoogle Scholar
  49. Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12(6):e1001883CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wang Y-H, Poudel DD, Hasenstein KH (2011) Identification of SSR markers associated with saccharification yield using pool-based genome-wide association mapping in sorghum. Genome 54:883–889CrossRefPubMedGoogle Scholar
  51. Wang Y-H, Bible P, Loganantharaj R, Upadhyaya HD (2012) Identification of SSR markers associated with height using pool-based genome-wide association mapping in sorghum. Mol Breed 30:281–292CrossRefGoogle Scholar
  52. Wang Y-H, Acharya A, Burrell AM, Klein RR, Klein PE, Hasenstein KH (2013) Mapping and candidate genes associated with saccharification yield in sorghum. Genome 56:659–665CrossRefPubMedGoogle Scholar
  53. Wang Y-H, Burow GB, Burke JJ (2014) Genetic mapping of abiotic stress responses in sorghum. In: Wang Y-H, Upadhyaya HD, Kole C (eds) Genetics, genomics and breeding of sorghum. CRC Press, Boca Raton (USA), London (UK), New York (USA), pp 182–197Google Scholar
  54. Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407CrossRefGoogle Scholar
  55. Xu S, Zhu D, ZhangQ (2014) Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proc Natl Acad Sci USA 111:12456–12461Google Scholar
  56. Yu X, Li X, Wu Y, Mitchell SE, Roozeboom KL, Wang D, Bernardo R, Wang M, Pederson GA, Tesso TT, Yu J (2014) Genomic selection of biomass traits in a global collection of 976 sorghum accessions. In: Proceedings of the international plant and animal genome conference XXII, San Diego, CA, USA, p 011Google Scholar
  57. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20CrossRefGoogle Scholar
  58. Zou G, Zhai G, Feng Q, Yan S, Wang A, Zhao Q, Shao J, Zhang Z, Zou J, Han B, Tao Y (2012) Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot. doi: 10.1093/jxb/ers205 Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.State Level Biotechnology CentreMahatma Phule Agricultural UniversityRahuriIndia

Personalised recommendations