Advertisement

Searching for Optimal Configurations Within Large-Scale Models: A Cloud Computing Domain

  • Lina Ochoa
  • Oscar González-RojasEmail author
  • Mauricio Verano
  • Harold Castro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9975)

Abstract

Feature modeling is a widely accepted variability modeling technique for supporting decision-making scenarios, by representing decisions as features. However, there are scenarios where domain concepts have multiple implementation alternatives that have to be analyzed from large-scale data sources. Therefore, a manual selection of an optimal solution from within the alternatives space or even the complete representation of the domain is an unsuitable task. To solve this issue, we created a feature modeling metamodel and two specific processes to represent domain and implementation alternative models, and to search for optimal solutions whilst considering a set of optimization objectives. We applied this approach to a cloud computing case study and obtained an optimal provider configuration for deploying a JEE application.

Keywords

Conceptual modeling Big data Cloud Decision-making 

References

  1. 1.
    Chavarriaga, J., Noguera, C., Casallas, R., Jonckers, V.: Propagating decisions to detect and explain conflicts in a multi-step configuration process. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 337–352. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-11653-2_21 Google Scholar
  2. 2.
    Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applications. Addison-Wesley, New York (2000)Google Scholar
  3. 3.
    Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wasowski, A.: Cool features and tough decisions: a comparison of variability modeling approaches. In: Sixth International Workshop on Variability Modeling of Software-Intensive Systems, pp. 173–182. ACM, New York (2012)Google Scholar
  4. 4.
    García-Galán, J., Trinidad, P., Rana, O.F., Ruiz-Cortés, A.: Automated configuration support for infrastructure migration to the cloud. Future Gener. Comp. Sy. 55, 200–212 (2016)CrossRefGoogle Scholar
  5. 5.
    Holl, G., Thaller, D., Grünbacher, P., Elsner, C.: Managing emerging configuration dependencies in multi product lines. In: Sixth International Workshop on Variability Modeling of Software-Intensive Systems, pp. 3–10. ACM (2012)Google Scholar
  6. 6.
    Kang, K.C., Lee, H.: Systems and Software Variability Management. Concepts, Tools and Experiences, pp. 25–42. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Metzger, A., Pohl, K., Heymans, P., Schobbens, P.Y., Saval, G.: Disambiguating the documentation of variability in software product lines: a separation of concerns, formalization and automated analysis. In: 15th IEEE International Requirements Engineering Conference, pp. 243–253. IEEE Press, Delhi (2007)Google Scholar
  8. 8.
    Ochoa, L., Rojas, O.G., Thüm, T.: Using decision rules for solving conflicts in extended feature models. In: 8th International Conference on Software Language Engineering, pp. 149–160. ACM, Pittsburgh (2015)Google Scholar
  9. 9.
    Quinton, C., Romero, D., Duchien, L.: SALOON: a platform for selecting and configuring cloud environments. Softw. Pract. Exper. 46, 55–78 (2016)CrossRefGoogle Scholar
  10. 10.
    Rosenmüller, M., Siegmund, N., Thüm, T., Saake, G.: Multi-dimensional variability modeling. In: 5th Workshop on Variability Modeling of Software-Intensive Systems, pp. 11–20. ACM, New York (2011)Google Scholar
  11. 11.
    Schmid, K., Rabiser, R., Grünbacher, P.: A comparison of decision modeling approaches in product lines. In: 5th Workshop on Variability Modeling of Software-Intensive Systems, pp. 119–126. ACM, New York (2011)Google Scholar
  12. 12.
    Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: FeatureIDE: an extensible framework for feature-oriented software development. Sci. Comput. Program. 79, 70–85 (2014)CrossRefGoogle Scholar
  13. 13.
    Wittern, E., Kuhlenkamp, J., Menzel, M.: Cloud service selection based on variability modeling. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 127–141. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34321-6_9 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Lina Ochoa
    • 1
  • Oscar González-Rojas
    • 1
    Email author
  • Mauricio Verano
    • 1
  • Harold Castro
    • 1
  1. 1.Systems and Computing Engineering Department, School of EngineeringUniversidad de Los AndesBogotá D.C.Colombia

Personalised recommendations