Schedulability Analysis of Timed Regular Tasks by Under-Approximation on WCET

  • Bingbing Fang
  • Guoqiang Li
  • Daniel Sun
  • Hongming Cai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9984)

Abstract

Schedulability analysis is one of the most important issues in developing and analyzing real-time systems. Given a task system where each task is characterized by a worst-case execution time (WCET) and a relative deadline, the schedulability analysis is decidable. However in reality, it is difficult to calculate the WCET of a complex task, even after it is abstracted to a formal model, e.g., timed automata (TAs). This paper proposes a schedulability analysis method without the information of the WCET, by introducing a model named timed regular task automata (TRTAs). Each task is described by a TA, a starting point with a clock valuation, a status and a relative deadline. A test is performed on each TA for an under-approximation of the WCET. The system may still be unschedulable under the approximation. A further schedulability checking is then performed by encoding to the reachability problem of nested timed automata (NeTAs). The methodology is thus sound and complete.

References

  1. 1.
    Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications. Springer, New York (2004)MATHGoogle Scholar
  2. 2.
    Fersman, E., Krcal, P., Pettersson, P., Wang, Y.: Task automata: schedulability, decidability and undecidability. Inform. Comput. 205(8), 1149–1172 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.B., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P.P., Staschulat, J., Stenström, P.: The worst-case execution-time problem - overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst. 7(3), 1–53 (2008)CrossRefGoogle Scholar
  4. 4.
    Ericsson, C., Wall, A., Wang, Y.: Timed automata as task models for event-driven systems. In: Proceedings of the 6th International Conference on Real-Time Computing Systems and Applications (RTCSA 1999), pp. 182–189. IEEE Computer Society (1999)Google Scholar
  5. 5.
    Li, G., Cai, X., Ogawa, M., Yuen, S.: Nested timed automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 168–182. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40229-6_12 CrossRefGoogle Scholar
  6. 6.
    Li, G., Ogawa, M., Yuen, S.: Nested timed automata with frozen clocks. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 189–205. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22975-1_13 CrossRefGoogle Scholar
  7. 7.
    Wang, Y., Li, G., Yuen, S.: Nested timed automata with various clocks. Sci. Found. China 24(2), 51–68 (2016)Google Scholar
  8. 8.
    Choffrut, C., Goldwurm, M.: Timed automata with periodic clock constraints. J. Autom. Lang. Comb. 5(4), 371–404 (2000)MathSciNetMATHGoogle Scholar
  9. 9.
    Altisen, K., Gössler, G., Pnueli, A., Sifakis, J., Tripakis, S., Yovine, S.: A framework for scheduler synthesis. In: Proceedings of the 20th IEEE Real-Time Systems Symposium (RTSS 1999), pp. 154–163. IEEE Computer Society (1999)Google Scholar
  10. 10.
    Abdeddam, Y., Maler, O.: Job-Shop Scheduling Using Timed Automata? Springer, Berlin (2001)Google Scholar
  11. 11.
    Fehnker, A.: Scheduling a steel plant with timed automata. In: Proceedings of the Sixth International Conference on Real-Time Computing Systems and Applications, pp. 280–286 (1999)Google Scholar
  12. 12.
    Fersman, E., Pettersson, P., Yi, W.: Timed automata with asynchronous processes: schedulability and decidability. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 67–82. Springer, Heidelberg (2002). doi:10.1007/3-540-46002-0_6 CrossRefGoogle Scholar
  13. 13.
    Trivedi, A., Wojtczak, D.: Recursive timed automata. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 306–324. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15643-4_23 CrossRefGoogle Scholar
  14. 14.
    Benerecetti, M., Minopoli, S., Peron, A.: Analysis of timed recursive state machines. In: Proceedings of the 17th International Symposium on Temporal Representation and Reasoning (TIME 2010), pp. 61–68. IEEE Computer Society (2010)Google Scholar
  15. 15.
    Benerecetti, M., Peron, A.: Timed recursive state machines: expressiveness and complexity. Theor. Comput. Sci. 625, 85–124 (2016)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inform. Comput. 111(2), 193–244 (1994)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In: Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science (LICS 2012), pp. 35–44. IEEE Computer Society (2012)Google Scholar
  19. 19.
    Kozen, D.C.: Automata and Computability. Springer, New York (1951)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Bingbing Fang
    • 1
  • Guoqiang Li
    • 1
  • Daniel Sun
    • 2
  • Hongming Cai
    • 1
  1. 1.School of SoftwareShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Data61, CSIRONew South WalesAustralia

Personalised recommendations