CoSoLoRec: Joint Factor Model with Content, Social, Location for Heterogeneous Point-of-Interest Recommendation

  • Hao Guo
  • Xin Li
  • Ming He
  • Xiangyu Zhao
  • Guiquan LiuEmail author
  • Guandong Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9983)


The pervasive use of Location-based Social Networks calls for more precise Point-of-Interest recommendation. The probability of a user’s visit to a target place is influenced by multiple factors. Though there are several fusion models in such fields, heterogeneous information are not considered comprehensively. To this end, we propose a novel probabilistic latent factor model by jointly considering the social correlation, geographical influence and users’ preference. To be specific, a variant of Latent Dirichlet Allocation is leveraged to extract the topics of both user and POI from reviews which is denoted as explicit interest. Then, Probabilistic Latent Factor Model is introduced to depict the implicit interest. Moreover, Kernel Density Estimation and friend-based Collaborative Filtering are leveraged to model user’s geographic allocation and social correlation respectively. Thus, we propose CoSoLoRec, a fusion framework, to ameliorate the recommendation. Experiments on two real-word datasets show the superiority of our approach over the state-of-the-art methods.


Location-based Social Network Point-of-Interest recommendation Topic model Probabilistic latent factor model Heterogeneous information 


  1. 1.
    Tobler, W.R.: A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46, 234–240 (1970)CrossRefGoogle Scholar
  2. 2.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Revi. Sociol. 27, 415–444 (2001)CrossRefGoogle Scholar
  3. 3.
    Dehnad, K.: Density estimation for statistics and data analysis. Technometrics 29(4), 495–495 (1987)CrossRefGoogle Scholar
  4. 4.
    Ye, M., et al.: Exploiting geographical influence for collaborative point-of-interest recommendation. In: Proceedings of ACM SIGIR. ACM (2011)Google Scholar
  5. 5.
    Cheng, C., Yang, H., et al.: Fused matrix factorization with geographical and social influence in location-based social networks. In: AAAI (2012)Google Scholar
  6. 6.
    Hu, B., Ester, M.: Spatial topic modeling in online social media for location recommendation. In: Proceedings of the 7th ACM Recsys. ACM (2013)Google Scholar
  7. 7.
    Mnih, A., Salakhutdinov, R.: Probabilistic matrix factorization. In: NIPS (2007)Google Scholar
  8. 8.
    Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)CrossRefGoogle Scholar
  9. 9.
    Liu, B., Xiong, H.: Point-of-interest recommendation in location based social networks with topic and location awareness. In: SDM, vol. 13 (2013)Google Scholar
  10. 10.
    Liu, B., et al.: Learning geographical preferences for point-of-interest recommendation. In: Proceedings of ACM SIGKDD. ACM (2013)Google Scholar
  11. 11.
    Liu, B., et al.: A general geographical probabilistic factor model for point of interest recommendation. TKDE 27, 1167–1179 (2015)Google Scholar
  12. 12.
    Ma, H., Lyu, M.R., King, I.: Learning to recommend with trust and distrust relationships. In: Proceedings of ACM Recsys. ACM (2009)Google Scholar
  13. 13.
    Tong, H., Faloutsos, C., Pan, J.-Y.: Fast random walk with restart and its applications. In: Proceedings of IEEE ICDM. IEEE Computer Society (2006)Google Scholar
  14. 14.
    Ma, H., et al.: Probabilistic factor models for web site recommendation. In: Proceedings of ACM SIGIR. ACM (2011)Google Scholar
  15. 15.
    Chen, Y., et al.: Factor modeling for advertisement targeting. In: NIPS (2009)Google Scholar
  16. 16.
    Anderson, M., et al.: Learning from the crowd: regression discontinuity estimates of the effects of an online review database. Econ. J. 122(563), 957–989 (2012)CrossRefGoogle Scholar
  17. 17.
    Zhang, J., Chow, C.-Y., et al.: iGeoRec: a personalized and efficient geographical location recommendation framework. IEEE Trans. Serv. Comput. 8, 701–714 (2015)CrossRefGoogle Scholar
  18. 18.
    Schmidt, M.N., Winther, O., Hansen, L.K.: Bayesian non-negative matrix factorization. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds.) ICA 2009. LNCS, vol. 5441, pp. 540–547. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00599-2_68 CrossRefGoogle Scholar
  19. 19.
    Kurashima, T., Iwata, T., Hoshide, T., Takaya, N., Fujimura, K.: Geo topic model: joint modeling of user’s activity area and interests for location recommendation. In: Proceedings of ACM WSDM. ACM (2013)Google Scholar
  20. 20.
    Yin, H., Sun, Y., Cui, B., Hu, Z., Chen, L.: Lcars: a location-content-aware recommender system. In: Proceedings of ACM SIGKDD. ACM (2013)Google Scholar
  21. 21.
    Lian, D., Zhao, C., Xie, X., Sun, G., Chen, E., Rui, Y.: GeoMF: joint geographical modeling and matrix factorization for point-of-interest recommendation. In: Proceedings of ACM SIGKDD. ACM (2014)Google Scholar
  22. 22.
    Zheng, N., Jin, X., Li, L.: Cross-region collaborative filtering for new point-of-interest recommendation. In: Proceedings of WWW Companion (2013)Google Scholar
  23. 23.
    Zhang, C., Wang, K.: POI recommendation through cross-region collaborative filtering. KIS 46, 369–387 (2016)Google Scholar
  24. 24.
    Ye, M., Shou, D., Lee, W.-C., et al.: On the semantic annotation of places in location-based social networks. In: Proceedings of ACM SIGKDD. ACM (2011)Google Scholar
  25. 25.
    Yin, P., Luo, P., Lee, W.-C., Wang, M.: App recommendation: a contest between satisfaction and temptation. In: Proceedings of ACM WSDM. ACM (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Hao Guo
    • 1
  • Xin Li
    • 3
  • Ming He
    • 1
  • Xiangyu Zhao
    • 1
  • Guiquan Liu
    • 1
    Email author
  • Guandong Xu
    • 2
  1. 1.University of Science and Technology of ChinaHefeiChina
  2. 2.University of Technology SydneySydneyAustralia
  3. 3.IFLYTEK ResearchHefeiChina

Personalised recommendations