A Benchmark for Ontologies Merging Assessment

  • Mariem Mahfoudh
  • Germain Forestier
  • Michel Hassenforder
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9983)

Abstract

In the last years, ontology modeling became popular and thousands of ontologies covering multiple fields of application are now available. However, as multiple ontologies might be available on the same or related domain, there is an urgent need for tools to compare, match, merge and assess ontologies. Ontology matching, which consists in aligning ontology, has been widely studied and benchmarks exist to evaluate the different matching methods. However, somewhat surprisingly, there are no significant benchmarks for merging ontologies, proving input ontologies and the resulting merged ontology. To fill this gap, we propose a benchmark for ontologies merging, which contains different ontologies types, for instance: taxonomies, lightweight ontologies, heavyweight ontologies and multilingual ontologies. We also show how the GROM tool (Graph Rewriting for Ontology Merging) can address the merging process and we evaluate it based on coverage, redundancy and coherence metrics. We performed experiments and show that the tool obtained good results in terms of redundancy and coherence.

Keywords

Ontologies merging Benchmark Graph rewriting GROM tool 

References

  1. 1.
    Raunich, S., Rahm, E.: Towards a benchmark for ontology merging. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds.) OTM 2012. LNCS, vol. 7567, pp. 124–133. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33618-8_20 CrossRefGoogle Scholar
  2. 2.
    Klein, M.: Combining and relating ontologies: an analysis of problems and solutions. In: IJCAI-2001, Workshop on Ontologies and Information Sharing, pp. 53–62 (2001)Google Scholar
  3. 3.
    Raunich, S., Rahm, E.: Target-driven merging of taxonomies with atom. Inf. Syst. 42, 1–14 (2014)CrossRefGoogle Scholar
  4. 4.
    Mahfoudh, M., Thiry, L., Forestier, G., Hassenforder, M.: Algebraic graph transformations for merging ontologies. In: Ait Ameur, Y., Bellatreche, L., Papadopoulos, G.A. (eds.) MEDI 2014. LNCS, vol. 8748, pp. 154–168. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11587-0_16 Google Scholar
  5. 5.
    Gandon, F.: Ontologies in computer science. In: Management and Design: Advanced Tools and Models (2010)Google Scholar
  6. 6.
    Stumme, G., Maedche, A.: FCA-MERGE: bottom-up merging of ontologies. In: Seventeenth International Joint Conference on Artificial Intelligence, pp. 225–230 (2001)Google Scholar
  7. 7.
    Noy, N.F., Musen, M.A.: Algorithm and tool for automated ontology merging and alignment. In: 17th National Conference on Artificial Intelligence, pp. 450–455. AAAI Press/The MIT Press (2000)Google Scholar
  8. 8.
    Kotis, K., Vouros, G.A.: The HCONE approach to ontology merging. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 137–151. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25956-5_10 CrossRefGoogle Scholar
  9. 9.
    Li, G., Luo, Z., Shao, J.: Multi-mapping based ontology merging system design. In: 2nd International Conference on Advanced Computer Control, pp. 5–11. IEEE (2010)Google Scholar
  10. 10.
    Duchateau, F., Bellahsene, Z.: Measuring the quality of an integrated schema. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 261–273. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16373-9_19 CrossRefGoogle Scholar
  11. 11.
    Ehrig, H., Montanari, U., Rozenberg, G., Schneider, H.J.: Graph Transformations in Computer Science. Geschäftsstelle Schloss Dagstuhl (1996)Google Scholar
  12. 12.
    d’Aquin, M., Doran, P., Motta, E., Tamma, V.A.: Towards a parametric ontology modularization framework based on graph transformation. In: WoMO (2007)Google Scholar
  13. 13.
    Mahfoudh, M., Forestier, G., Thiry, L., Hassenforder, M.: Consistent ontologies evolution using graph grammars. In: Wang, M. (ed.) KSEM 2013. LNCS (LNAI), vol. 8041, pp. 64–75. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39787-5_6 CrossRefGoogle Scholar
  14. 14.
    Mahfoudh, M., Forestier, G., Thiry, L., Hassenforder, M.: Algebraic graph transformations for formalizing ontology changes and evolving ontologies. Knowl.-Based Syst. 73, 212–226 (2015)CrossRefGoogle Scholar
  15. 15.
    Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1. World Scientific, Singapore (1999)MATHGoogle Scholar
  16. 16.
    Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach. In: Switching and Automata Theory, pp. 167–180. IEEE (1973)Google Scholar
  17. 17.
    Barr, M., Wells, C.: Category Theory for Computing Science, vol. 10. Prentice Hall, New York (1990)MATHGoogle Scholar
  18. 18.
    Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoret. Comput. Sci. 109(1), 181–224 (1993)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Ehrig, H.: Introduction to the algebraic theory of graph grammars (a survey). In: Claus, V., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol. 73, pp. 1–69. Springer, Heidelberg (1979). doi:10.1007/BFb0025714 CrossRefGoogle Scholar
  20. 20.
    Peukert, E., Massmann, S., Koenig, K.: Comparing similarity combination methods for schema matching. In: GI Jahrestagung (1), pp. 692–701. Citeseer (2010)Google Scholar
  21. 21.
    OAEI: Ontology alignment evaluation initiative (2016). http://oaei.ontologymatching.org/2016/conference

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Mariem Mahfoudh
    • 1
  • Germain Forestier
    • 2
  • Michel Hassenforder
    • 2
  1. 1.CNRS, LORIA, UMR 7503Vandœuvre-lès-NancyFrance
  2. 2.MIPS EA 2332, Université de Haute AlsaceMulhouseFrance

Personalised recommendations