Advertisement

Opioid-Induced Hyperalgesia After Surgery: Clinical Relevance

  • Philippe RichebeEmail author
  • Cyrip Rivat
Chapter

Abstract

For decades opioids have been used to treat chronic pain as well as perioperative pain. More recently, the phenomenon of opioid-induced hyperalgesia (OIH) was introduced in the literature: the demonstration of diffuse hyperalgesia after chronic exposure to morphine (or other opioids), OIH, was linked to evidence of central sensitization detected by changes in heat tolerance thresholds and temporal summation tests (Chu et al., J Pain 7(1):43–8, 2006; Compton et al., Drug Alcohol Depend 63(2):139–46, 2001; Chen et al., Pain 143(1–2):65–70, 2009; Woolf, Pain 152(3 Suppl.):S2–15, 2011). To date, preexisting OIH, in the perioperative period, has not been well reported in the anesthesia literature. However, experimental studies suggest that sensitivity to pain is greater in those animals who have been exposed to opioids perioperatively as compared to those who were unexposed animals (Laboureyras et al., Anesth Analg 109(2):623–31, 2009; Celerier et al., Anesthesiology 92(2):465–72, 2000; Rivat et al., Anesthesiology 96(2):381–91, 2002).

Keywords

Acute pain/physiopathology Analgesics, opioid/administration, and dosage Chronic pain/drug therapy Chronic pain/epidemiology Chronic pain/physiopathology Hyperalgesia/drug therapy Hyperalgesia/epidemiology Hyperalgesia/physiopathology Morphine/administration and dosage Pain, postoperative/drug therapy Pain, postoperative/epidemiology Pain, postoperative/physiopathology Remifentanil 

References

  1. 1.
    Chu LF, Clark DJ, Angst MS. Opioid tolerance and hyperalgesia in chronic pain patients after one month of oral morphine therapy: a preliminary prospective study. J Pain. 2006;7(1):43–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Compton P, Charuvastra VC, Ling W. Pain intolerance in opioid-maintained former opiate addicts: effect of long-acting maintenance agent. Drug Alcohol Depend. 2001;63(2):139–46.PubMedCrossRefGoogle Scholar
  3. 3.
    Chen L, et al. Altered quantitative sensory testing outcome in subjects with opioid therapy. Pain. 2009;143(1–2):65–70.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Laboureyras E, et al. Long-term pain vulnerability after surgery in rats: prevention by nefopam, an analgesic with antihyperalgesic properties. Anesth Analg. 2009;109(2):623–31.PubMedCrossRefGoogle Scholar
  6. 6.
    Celerier E, et al. Long-lasting hyperalgesia induced by fentanyl in rats: preventive effect of ketamine. Anesthesiology. 2000;92(2):465–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Rivat C, et al. Fentanyl enhancement of carrageenan-induced long-lasting hyperalgesia in rats: prevention by the N-methyl-d-aspartate receptor antagonist ketamine. Anesthesiology. 2002;96(2):381–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Joly V, et al. Remifentanil-induced postoperative hyperalgesia and its prevention with small-dose ketamine. Anesthesiology. 2005;103(1):147–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Lavand’homme P, De Kock M, Waterloos H. Intraoperative epidural analgesia combined with ketamine provides effective preventive analgesia in patients undergoing major digestive surgery. Anesthesiology. 2005;103(4):813–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Dirks J, et al. Mechanisms of postoperative pain: clinical indications for a contribution of central neuronal sensitization. Anesthesiology. 2002;97(6):1591–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Skljarevski V, Ramadan NM. The nociceptive flexion reflex in humans—review article. Pain. 2002;96(1–2):3–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Koppert W, et al. A new model of electrically evoked pain and hyperalgesia in human skin: the effects of intravenous alfentanil, S(+)-ketamine, and lidocaine. Anesthesiology. 2001;95(2):395–402.PubMedCrossRefGoogle Scholar
  13. 13.
    Eisenach JC. Preventing chronic pain after surgery: who, how, and when? Reg Anesth Pain Med. 2006;31(1):1–3.PubMedGoogle Scholar
  14. 14.
    Kehlet H, Jensen TS, Woolf CJ. Persistent postsurgical pain: risk factors and prevention. Lancet. 2006;367(9522):1618–25.PubMedCrossRefGoogle Scholar
  15. 15.
    Fletcher D, Martinez V. Opioid-induced hyperalgesia in patients after surgery: a systematic review and a meta-analysis. Br J Anaesth. 2014;112(6):991–1004.PubMedCrossRefGoogle Scholar
  16. 16.
    Ji RR, et al. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 2003;26(12):696–705.PubMedCrossRefGoogle Scholar
  17. 17.
    Wen YR, et al. Microglia: a promising target for treating neuropathic and postoperative pain, and morphine tolerance. J Formos Med Assoc. 2011;110(8):487–94.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Romero A, et al. Glial cell activation in the spinal cord and dorsal root ganglia induced by surgery in mice. Eur J Pharmacol. 2013;702(1–3):126–34.PubMedCrossRefGoogle Scholar
  20. 20.
    Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain. 2013;154 Suppl 1:S10–28.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Cabanero D, et al. The pro-nociceptive effects of remifentanil or surgical injury in mice are associated with a decrease in delta-opioid receptor mRNA levels: prevention of the nociceptive response by on-site delivery of enkephalins. Pain. 2009;141(1–2):88–96.PubMedCrossRefGoogle Scholar
  22. 22.
    Cabanero D, et al. Pronociceptive effects of remifentanil in a mouse model of postsurgical pain: effect of a second surgery. Anesthesiology. 2009;111(6):1334–45.PubMedCrossRefGoogle Scholar
  23. 23.
    Richebe P, et al. Nitrous oxide revisited: evidence for potent antihyperalgesic properties. Anesthesiology. 2005;103(4):845–54.PubMedCrossRefGoogle Scholar
  24. 24.
    Richebe P, et al. Ketamine improves the management of exaggerated postoperative pain observed in perioperative fentanyl-treated rats. Anesthesiology. 2005;102(2):421–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Van Elstraete AC, et al. A single dose of intrathecal morphine in rats induces long-lasting hyperalgesia: the protective effect of prior administration of ketamine. Anesth Analg. 2005;101(6):1750–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Ishida R, et al. Intravenous infusion of remifentanil induces transient withdrawal hyperalgesia depending on administration duration in rats. Anesth Analg. 2012;114(1):224–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Celerier E, et al. Opioid-induced hyperalgesia in a murine model of postoperative pain: role of nitric oxide generated from the inducible nitric oxide synthase. Anesthesiology. 2006;104(3):546–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Crain SM, Shen KF. Modulation of opioid analgesia, tolerance and dependence by Gs-coupled, GM1 ganglioside-regulated opioid receptor functions. Trends Pharmacol Sci. 1998;19(9):358–65.PubMedCrossRefGoogle Scholar
  29. 29.
    Crain SM, Shen KF. Antagonists of excitatory opioid receptor functions enhance morphine’s analgesic potency and attenuate opioid tolerance/dependence liability. Pain. 2000;84(2–3):121–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Crain SM, Shen KF. Neuraminidase inhibitor, oseltamivir blocks GM1 ganglioside-regulated excitatory opioid receptor-mediated hyperalgesia, enhances opioid analgesia and attenuates tolerance in mice. Brain Res. 2004;995(2):260–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Rodriguez-Munoz M, et al. The mu-opioid receptor and the NMDA receptor associate in PAG neurons: implications in pain control. Neuropsychopharmacology. 2012;37(2):338–49.PubMedCrossRefGoogle Scholar
  32. 32.
    Kow LM, et al. Potentiation of the excitatory action of NMDA in ventrolateral periaqueductal gray by the mu-opioid receptor agonist. DAMGO Brain Res. 2002;935(1–2):87–102.PubMedCrossRefGoogle Scholar
  33. 33.
    Galeotti N, et al. Signaling pathway of morphine induced acute thermal hyperalgesia in mice. Pain. 2006;123(3):294–305.PubMedCrossRefGoogle Scholar
  34. 34.
    Sanna MD, Ghelardini C, Galeotti N. Regionally selective activation of ERK and JNK in morphine paradoxical hyperalgesia: a step toward improving opioid pain therapy. Neuropharmacology. 2014;86:67–77.PubMedCrossRefGoogle Scholar
  35. 35.
    Celerier E, et al. Evidence for opiate-activated NMDA processes masking opiate analgesia in rats. Brain Res. 1999;847(1):18–25.PubMedCrossRefGoogle Scholar
  36. 36.
    Li X, Angst MS, Clark JD. A murine model of opioid-induced hyperalgesia. Brain Res Mol Brain Res. 2001;86(1–2):56–62.PubMedCrossRefGoogle Scholar
  37. 37.
    Wala EP, Holtman Jr JR. Buprenorphine-induced hyperalgesia in the rat. Eur J Pharmacol. 2011;651(1–3):89–95.PubMedCrossRefGoogle Scholar
  38. 38.
    Ahmadi S, et al. N-methyl-d-aspartate receptors involved in morphine-induced hyperalgesia in sensitized mice. Eur J Pharmacol. 2014;737:85–90.PubMedCrossRefGoogle Scholar
  39. 39.
    Eidson LN, Murphy AZ. Blockade of Toll-like receptor 4 attenuates morphine tolerance and facilitates the pain relieving properties of morphine. J Neurosci. 2013;33(40):15952–63.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Simonnet G, Rivat C. Opioid-induced hyperalgesia: abnormal or normal pain? Neuroreport. 2003;14(1):1–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Ossipov MH, et al. Underlying mechanisms of pronociceptive consequences of prolonged morphine exposure. Biopolymers. 2005;80(2–3):319–24.PubMedCrossRefGoogle Scholar
  42. 42.
    Chu LF, Angst MS, Clark D. Opioid-induced hyperalgesia in humans: molecular mechanisms and clinical considerations. Clin J Pain. 2008;24(6):479–96.PubMedCrossRefGoogle Scholar
  43. 43.
    Bannister K. Opioid-induced hyperalgesia: where are we now? Curr Opin Support Palliat Care. 2015;9(2):116–21.PubMedCrossRefGoogle Scholar
  44. 44.
    Richebe P, et al. Target-controlled dosing of remifentanil during cardiac surgery reduces postoperative hyperalgesia. J Cardiothorac Vasc Anesth. 2011;25(6):917–25.PubMedCrossRefGoogle Scholar
  45. 45.
    Salengros JC, et al. Different anesthetic techniques associated with different incidences of chronic post-thoracotomy pain: low-dose remifentanil plus presurgical epidural analgesia is preferable to high-dose remifentanil with postsurgical epidural analgesia. J Cardiothorac Vasc Anesth. 2010;24(4):608–16.PubMedCrossRefGoogle Scholar
  46. 46.
    Angst MS, Clark JD. Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology. 2006;104(3):570–87.PubMedCrossRefGoogle Scholar
  47. 47.
    Chia YY, et al. Intraoperative high dose fentanyl induces postoperative fentanyl tolerance. Can J Anaesth. 1999;46(9):872–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Guignard B, et al. Acute opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirement. Anesthesiology. 2000;93(2):409–17.PubMedCrossRefGoogle Scholar
  49. 49.
    Laulin JP, Maurette P, Corcuff JB, Rivat C, Chauvin M, Simonnet G. The role of ketamine in preventing fentanyl-induced hyperalgesia and subsequent acute morphine tolerance. Anesth Analg. 2002;94(5):1263–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Kim SH, et al. Intraoperative use of remifentanil and opioid induced hyperalgesia/acute opioid tolerance: systematic review. Front Pharmacol. 2014;5:108.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Koppert W, et al. Differential modulation of remifentanil-induced analgesia and postinfusion hyperalgesia by S-ketamine and clonidine in humans. Anesthesiology. 2003;99(1):152–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Angst MS, et al. Short-term infusion of the mu-opioid agonist remifentanil in humans causes hyperalgesia during withdrawal. Pain. 2003;106(1–2):49–57.PubMedCrossRefGoogle Scholar
  53. 53.
    Shin SW, et al. Maintenance anaesthetics during remifentanil-based anaesthesia might affect postoperative pain control after breast cancer surgery. Br J Anaesth. 2010;105(5):661–7.PubMedCrossRefGoogle Scholar
  54. 54.
    van Gulik L, et al. Remifentanil during cardiac surgery is associated with chronic thoracic pain 1 yr after sternotomy. Br J Anaesth. 2012;109(4):616–22.PubMedCrossRefGoogle Scholar
  55. 55.
    Suzuki M, et al. Determining the plasma concentration of ketamine that enhances epidural bupivacaine-and-morphine-induced analgesia. Anesth Analg. 2005;101(3):777–84.PubMedCrossRefGoogle Scholar
  56. 56.
    Clements JA, Nimmo WS. Pharmacokinetics and analgesic effect of ketamine in man. Br J Anaesth. 1981;53(1):27–30.PubMedCrossRefGoogle Scholar
  57. 57.
    Owen H, et al. Analgesia from morphine and ketamine. A comparison of infusions of morphine and ketamine for postoperative analgesia. Anaesthesia. 1987;42(10):1051–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Stubhaug A, et al. Mapping of punctuate hyperalgesia around a surgical incision demonstrates that ketamine is a powerful suppressor of central sensitization to pain following surgery. Acta Anaesthesiol Scand. 1997;41(9):1124–32.PubMedCrossRefGoogle Scholar
  59. 59.
    Ozyalcin NS, et al. Effect of pre-emptive ketamine on sensory changes and postoperative pain after thoracotomy: comparison of epidural and intramuscular routes. Br J Anaesth. 2004;93(3):356–61.PubMedCrossRefGoogle Scholar
  60. 60.
    Schmid RL, Sandler AN, Katz J. Use and efficacy of low-dose ketamine in the management of acute postoperative pain: a review of current techniques and outcomes. Pain. 1999;82(2):111–25.PubMedCrossRefGoogle Scholar
  61. 61.
    Bell RF, et al. Peri-operative ketamine for acute post-operative pain: a quantitative and qualitative systematic review (Cochrane review). Acta Anaesthesiol Scand. 2005;49(10):1405–28.PubMedCrossRefGoogle Scholar
  62. 62.
    Elia N, Tramer MR. Ketamine and postoperative pain—a quantitative systematic review of randomised trials. Pain. 2005;113(1–2):61–70.PubMedCrossRefGoogle Scholar
  63. 63.
    Himmelseher S, Durieux ME. Ketamine for perioperative pain management. Anesthesiology. 2005;102(1):211–20.PubMedCrossRefGoogle Scholar
  64. 64.
    Laskowski K, et al. A systematic review of intravenous ketamine for postoperative analgesia. Can J Anaesth. 2011;58(10):911–23.PubMedCrossRefGoogle Scholar
  65. 65.
    Chauvin M, et al. How can we use antihyperalgesic drugs? Ann Fr Anesth Reanim. 2009;28(1):e13–25.PubMedCrossRefGoogle Scholar
  66. 66.
    De Kock M, Lavand’homme P, Waterloos H. ‘Balanced analgesia’ in the perioperative period: is there a place for ketamine? Pain. 2001;92(3):373–80.PubMedCrossRefGoogle Scholar
  67. 67.
    Kawana Y, et al. Epidural ketamine for postoperative pain relief after gynecologic operations: a double-blind study and comparison with epidural morphine. Anesth Analg. 1987;66(8):735–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Islas JA, Astorga J, Laredo M. Epidural ketamine for control of postoperative pain. Anesth Analg. 1985;64(12):1161–2.PubMedCrossRefGoogle Scholar
  69. 69.
    Bowdle TA, et al. Psychedelic effects of ketamine in healthy volunteers: relationship to steady-state plasma concentrations. Anesthesiology. 1998;88(1):82–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Webb AR, et al. The addition of a small-dose ketamine infusion to tramadol for postoperative analgesia: a double-blinded, placebo-controlled, randomized trial after abdominal surgery. Anesth Analg. 2007;104(4):912–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Mion G, Tourtier JP, Rousseau JM. Ketamine in PCA: what is the effective dose? Eur J Anaesthesiol. 2008;25(12):1040–1.PubMedCrossRefGoogle Scholar
  72. 72.
    Carstensen M, Moller AM. Adding ketamine to morphine for intravenous patient-controlled analgesia for acute postoperative pain: a qualitative review of randomized trials. Br J Anaesth. 2010;104(4):401–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Loftus RW, et al. Intraoperative ketamine reduces perioperative opiate consumption in opiate-dependent patients with chronic back pain undergoing back surgery. Anesthesiology. 2010;113(3):639–46.PubMedGoogle Scholar
  74. 74.
    Duedahl TH, et al. A qualitative systematic review of peri-operative dextromethorphan in post-operative pain. Acta Anaesthesiol Scand. 2006;50(1):1–13.PubMedCrossRefGoogle Scholar
  75. 75.
    Mercieri M, et al. Changes in cerebrospinal fluid magnesium levels in patients undergoing spinal anaesthesia for hip arthroplasty: does intravenous infusion of magnesium sulphate make any difference? A prospective, randomized, controlled study. Br J Anaesth. 2012;109(2):208–15.PubMedCrossRefGoogle Scholar
  76. 76.
    Begon S, et al. Magnesium increases morphine analgesic effect in different experimental models of pain. Anesthesiology. 2002;96(3):627–32.PubMedCrossRefGoogle Scholar
  77. 77.
    Begon S, et al. Assessment of the relationship between hyperalgesia and peripheral inflammation in magnesium-deficient rats. Life Sci. 2002;70(9):1053–63.PubMedCrossRefGoogle Scholar
  78. 78.
    Begon S, et al. Role of spinal NMDA receptors, protein kinase C and nitric oxide synthase in the hyperalgesia induced by magnesium deficiency in rats. Br J Pharmacol. 2001;134(6):1227–36.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Begon S, et al. Magnesium and MK-801 have a similar effect in two experimental models of neuropathic pain. Brain Res. 2000;887(2):436–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Tauzin-Fin P, et al. Intravenous magnesium sulphate decreases postoperative tramadol requirement after radical prostatectomy. Eur J Anaesthesiol. 2006;23(12):1055–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Steinlechner B, et al. Magnesium moderately decreases remifentanil dosage required for pain management after cardiac surgery. Br J Anaesth. 2006;96(4):444–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Mikkelsen S, et al. Effect of intravenous magnesium on pain and secondary hyperalgesia associated with the heat/capsaicin sensitization model in healthy volunteers. Br J Anaesth. 2001;86(6):871–3.PubMedCrossRefGoogle Scholar
  83. 83.
    Tramer MR, Glynn CJ. An evaluation of a single dose of magnesium to supplement analgesia after ambulatory surgery: randomized controlled trial. Anesth Analg. 2007;104(6):1374–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Lysakowski C, Dumont L, Czarnetzki C, Tramèr MR. Magnesium as an adjuvant to postoperative analgesia: a systematic review of randomized trials. Anesth Analg. 2007;104(6):1532–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Wilder-Smith CH, Knopfli R, Wilder-Smith OH. Perioperative magnesium infusion and postoperative pain. Acta Anaesthesiol Scand. 1997;41(8):1023–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Albrecht E, et al. Peri-operative intravenous administration of magnesium sulphate and postoperative pain: a meta-analysis. Anaesthesia. 2013;68(1):79–90.PubMedCrossRefGoogle Scholar
  87. 87.
    Sun J, et al. A comparison of epidural magnesium and/or morphine with bupivacaine for postoperative analgesia after cesarean section. Int J Obstet Anesth. 2012;21(4):310–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Yousef AA, Amr YM. The effect of adding magnesium sulphate to epidural bupivacaine and fentanyl in elective caesarean section using combined spinal-epidural anaesthesia: a prospective double blind randomised study. Int J Obstet Anesth. 2010;19(4):401–4.PubMedCrossRefGoogle Scholar
  89. 89.
    Bilir A, et al. Epidural magnesium reduces postoperative analgesic requirement. Br J Anaesth. 2007;98(4):519–23.PubMedCrossRefGoogle Scholar
  90. 90.
    Arcioni R, et al. Combined intrathecal and epidural magnesium sulfate supplementation of spinal anesthesia to reduce post-operative analgesic requirements: a prospective, randomized, double-blind, controlled trial in patients undergoing major orthopedic surgery. Acta Anaesthesiol Scand. 2007;51(4):482–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Albrecht E, et al. The analgesic efficacy and safety of neuraxial magnesium sulphate: a quantitative review. Anaesthesia. 2013;68(2):190–202.PubMedCrossRefGoogle Scholar
  92. 92.
    Jevtovic-Todorovic V, et al. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med. 1998;4(4):460–3.PubMedCrossRefGoogle Scholar
  93. 93.
    Ranft A, et al. Nitrous oxide (N2O) pre- and postsynaptically attenuates NMDA receptor-mediated neurotransmission in the amygdala. Neuropharmacology. 2007;52(3):716–23.PubMedCrossRefGoogle Scholar
  94. 94.
    Meleine M, et al. Sciatic nerve block fails in preventing the development of late stress-induced hyperalgesia when high-dose fentanyl is administered perioperatively in rats. Reg Anesth Pain Med. 2012;37(4):448–54.PubMedCrossRefGoogle Scholar
  95. 95.
    Senturk M, Ozcan PE, Talu GK, Kiyan E, Camci E, Ozyalçin S, Dilege S, Pembeci K. The effects of three different analgesia techniques on long-term postthoracotomy pain. Anesth Analg. 2002;94(1):11–5.PubMedCrossRefGoogle Scholar
  96. 96.
    Ju H, et al. Comparison of epidural analgesia and intercostal nerve cryoanalgesia for post-thoracotomy pain control. Eur J Pain. 2008;12(3):378–84.PubMedCrossRefGoogle Scholar
  97. 97.
    Lu YL, Wang XD, Lai RC. Correlation of acute pain treatment to occurrence of chronic pain in tumor patients after thoracotomy. Ai Zheng. 2008;27(2):206–9.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Maisonneuve Rosemont Hospital, CIUSSS de l’Est-de-l’ile-de-MontrealMontrealCanada
  2. 2.Department of AnesthesiologyUniversity of MontrealMontrealCanada

Personalised recommendations