Advertisement

Consciousness and Anesthesia

  • Ram Adapa
Chapter

Abstract

There is as yet no generalised theory of anaesthesia. This lack of understanding of the mechanisms underpinning general anaesthesia is partly due to a lack of convergence of the various methodologies employed to explore these. However, this gap is also fundamentally due to the absence of a universally accepted definition of consciousness. Cognitive neuroscience has seen a relatively recent resurgence of interest in the study of consciousness that has successfully brought together sleep and anaesthesia research in an attempt to address this deficiency. Investigations into the neurophysiological mechanisms of consciousness and of general anaesthesia mutually inform each other. Sleep shares behavioural phenotypes with the state of anaesthesia, but critically differs in arousal by external stimuli and the rhythmic cycling between different stages. Exploring the relationship of general anaesthesia to sleep has provided substantial insights into the mechanisms of anaesthesia. Basic science, animal and lesion studies over the past several decades provide ample evidence for the fact that anaesthesia and sleep affect key neurochemical circuits in the brainstem, the basal forebrain, the thalamus and the cortex. However, as yet unanswered is the hierarchical organisation in these systems and how disparate pharmacological and pathological entities generate a comparable behavioural state of unconsciousness and unresponsiveness. This chapter will aim to bring together an overview of the current knowledge and recent evidence surrounding the neural, chemical and network substrates underlying consciousness and two common conditions of altered states of consciousness (sleep and anaesthesia).

Keywords

Anaesthesia, general Anaesthetics/pharmacology Brain/drug effects Consciousness Consciousness/drug effects Memory Memory/drug effects 

References

  1. 1.
    Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001;24:726–31.PubMedCrossRefGoogle Scholar
  2. 2.
    Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep state switching. Neuron. 2010;68:1023–42.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1:455–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Lee SH, Dan Y. Neuromodulation of brain states. Neuron. 2012;76:209–22.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Leung LS, Luo T, Ma J, Herrick I. Brain areas that influence general anesthesia. Prog Neurobiol. 2014;122:24–44.PubMedCrossRefGoogle Scholar
  6. 6.
    Lu J, Sherman D, Devor M, Saper CB. A putative flip-flop switch for control of REM sleep. Nature. 2006;441:589–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP, Maze M. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci. 2002;5:979–84.PubMedCrossRefGoogle Scholar
  8. 8.
    Luo T, Leung LS. Involvement of tuberomammillary histaminergic neurons in isoflurane anesthesia. Anesthesiology. 2011;115:36–43.PubMedCrossRefGoogle Scholar
  9. 9.
    Correa-Sales C, Rabin BC, Maze M. A hypnotic response to dexmedetomidine, an alpha 2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology. 1992;76:948–52.PubMedCrossRefGoogle Scholar
  10. 10.
    Hu FY, Hanna GM, Han W, Mardini F, Thomas SA, Wyner AJ, et al. Hypnotic hypersensitivity to volatile anesthetics and dexmedetomidine in dopamine beta-hydroxylase knockout mice. Anesthesiology. 2012;117:1006–17.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Zhang Y, Yu T, Yuan J, Yu BW. The ventrolateral preoptic nucleus is required for propofol-induced inhibition of locus coeruleus neuronal activity. Neurol Sci. 2015;36:2177–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Mortazavi S, Thompson J, Baghdoyan HA, Lydic R. Fentanyl and morphine, but not remifentanil, inhibit acetylcholine release in pontine regions modulating arousal. Anesthesiology. 1999;90:1070–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Meuret P, Backman SB, Bonhomme V, Plourde G, Fiset P. Physostigmine reverses propofol-induced unconsciousness and attenuation of the auditory steady state response and bispectral index in human volunteers. Anesthesiology. 2000;93(3):708–17.PubMedCrossRefGoogle Scholar
  14. 14.
    Plourde G, Chartrand D, Fiset P, Font S, Backman SB. Antagonism of sevoflurane anaesthesia by physostigmine: effects on the auditory steady-state response and bispectral index. Br J Anaesth. 2003;91(4):583–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Kelz MB, Sun Y, Chen J, Cheng Meng Q, Moore JT, Veasey SC, Dixon S, Thornton M, Funato H, Yanagisawa M. An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci U S A. 2008;105:1309–14.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kubota T, Hirota K, Yoshida H, Takahashi S, Ohkawa H, Anzawa N, Kushikata T, Matsuki A. Inhibitory effect of clonidine on ketamine-induced norepinephrine release from the medial prefrontal cortex in rats. Br J Anaesth. 1999;83:945–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Kushikata T, Hirota K, Yoshida H, Kudo M, Lambert DG, Smart D, Jerman JC, Matsuki A. Orexinergic neurons and barbiturate anesthesia. Neuroscience. 2003;121:855–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, Mccarley RW. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science. 1997;276:1265–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Born J, Rasch B, Gais S. Sleep to remember. Neuroscientist. 2006;12:410–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, de Lecea L. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2010;13:1526–33.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Vazey EM, Aston-Jones G. Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proc Natl Acad Sci U S A. 2014;111:3859–64.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Solt K, Cotten JF, Cimenser A, Wong KF, Chemali JJ, Brown EN. Methylphenidate actively induces emergence from general anesthesia. Anesthesiology. 2011;115:791–803.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lee MG, Hassani OK, Alonso A, Jones BE. Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J Neurosci. 2005;25:4365–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Brown EN, Lydic R, Schiff ND. General anesthesia, sleep, and coma. N Engl J Med. 2010;363:2638–50.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Braun AR, Balkin TJ, Wesenten NJ, Carson RE, Varga M, Baldwin P, Selbie S, Belenky G, Herscovitch P. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain. 1997;120(Pt 7):1173–97.PubMedCrossRefGoogle Scholar
  26. 26.
    Gili T, Saxena N, Diukova A, Murphy K, Hall JE, Wise RG. The thalamus and brainstem act as key hubs in alterations of human brain network connectivity induced by mild propofol sedation. J Neurosci. 2013;33:4024–31.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Stamatakis EA, Adapa RM, Absalom AR, Menon DK. Changes in resting neural connectivity during propofol sedation. PLoS One. 2010;5, e14224.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gosseries O, Charland-Verville V, Thonnard M, Bodart O, Laureys S, Demertzi A. Amantadine, apomorphine and zolpidem in the treatment of disorders of consciousness. Curr Pharm Des. 2014;20:4167–84.PubMedGoogle Scholar
  29. 29.
    Thonnard M, Gosseries O, Demertzi A, Lugo Z, Vanhaudenhuyse A, Bruno MA, Chatelle C, Thibaut A, Charland-Verville V, Habbal D, Schnakers C, Laureys S. Effect of zolpidem in chronic disorders of consciousness: a prospective open-label study. Funct Neurol. 2013;28:259–64.PubMedGoogle Scholar
  30. 30.
    Tang L, Ge Y, Sodickson DK, Miles L, Zhou Y, Reaume J, Grossman RI. Thalamic resting-state functional networks: disruption in patients with mild traumatic brain injury. Radiology. 2011;260:831–40.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Alkire MT, Miller J. General anesthesia and the neural correlates of consciousness. Prog Brain Res. 2005;150:229–44.PubMedCrossRefGoogle Scholar
  32. 32.
    Baker R, Gent TC, Yang Q, Parker S, Vyssotski AL, Wisden W, Brickley SG, Franks NP. Altered activity in the central medial thalamus precedes changes in the neocortex during transitions into both sleep and propofol anesthesia. J Neurosci. 2014;34:13326–35.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Magnin M, Rey M, Bastuji H, Guillemant P, Mauguiere F, Garcia-Larrea L. Thalamic deactivation at sleep onset precedes that of the cerebral cortex in humans. Proc Natl Acad Sci U S A. 2010;107:3829–33.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Rey M, Bastuji H, Garcia-Larrea L, Guillemant P, Mauguiere F, Magnin M. Human thalamic and cortical activities assessed by dimension of activation and spectral edge frequency during sleep wake cycles. Sleep. 2007;30:907–12.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M, Fritz B, Eisenberg B, Biondi T, O’Connor J, Kobylarz EJ, Farris S, Machado A, Mccagg C, Plum F, Fins JJ, Rezai AR. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature. 2007;448:600–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Mashour GA, Alkire MT. Consciousness, anesthesia, and the thalamocortical system. Anesthesiology. 2013;118:13–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Liu X, Lauer KK, Ward BD, Li SJ, Hudetz AG. Differential effects of deep sedation with propofol on the specific and nonspecific thalamocortical systems: a functional magnetic resonance imaging study. Anesthesiology. 2013;118:59–69.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Detsch O, Vahle-Hinz C, Kochs E, Siemers M, Bromm B. Isoflurane induces dose-dependent changes of thalamic somatosensory information transfer. Brain Res. 1999;829:77–89.PubMedCrossRefGoogle Scholar
  39. 39.
    Ching S, Cimenser A, Purdon PL, Brown EN, Kopell NJ. Thalamocortical model for a propofol-induced alpha-rhythm associated with loss of consciousness. Proc Natl Acad Sci U S A. 2010;107:22665–70.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Boveroux P, Vanhaudenhuyse A, Bruno MA, Noirhomme Q, Lauwick S, Luxen A, Degueldre C, Plenevaux A, Schnakers C, Phillips C, Brichant JF, Bonhomme V, Maquet P, Greicius MD, Laureys S, Boly M. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology. 2010;113:1038–53.PubMedCrossRefGoogle Scholar
  41. 41.
    Velly LJ, Rey MF, Bruder NJ, Gouvitsos FA, Witjas T, Regis JM, Peragut JC, Gouin FM. Differential dynamic of action on cortical and subcortical structures of anesthetic agents during induction of anesthesia. Anesthesiology. 2007;107:202–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Mhuircheartaigh RN, Rosenorn-Lanng D, Wise R, Jbabdi S, Rogers R, Tracey I. Cortical and subcortical connectivity changes during decreasing levels of consciousness in humans: a functional magnetic resonance imaging study using propofol. J Neurosci. 2010;30:9095–102.PubMedCrossRefGoogle Scholar
  43. 43.
    Fiset P, Paus T, Daloze T, Plourde G, Meuret P, Bonhomme V, Hajj-Ali N, Backman SB, Evans AC. Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J Neurosci. 1999;19:5506–13.PubMedGoogle Scholar
  44. 44.
    White NS, Alkire MT. Impaired thalamocortical connectivity in humans during general-anesthetic-induced unconsciousness. Neuroimage. 2003;19:402–11.PubMedCrossRefGoogle Scholar
  45. 45.
    Alkire MT, Haier RJ, Fallon JH. Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Conscious Cogn. 2000;9:370–86.PubMedCrossRefGoogle Scholar
  46. 46.
    Alkire MT, Mcreynolds JR, Hahn EL, Trivedi AN. Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Anesthesiology. 2007;107:264–72.PubMedCrossRefGoogle Scholar
  47. 47.
    Ying SW, Abbas SY, Harrison NL, Goldstein PA. Propofol block of I(h) contributes to the suppression of neuronal excitability and rhythmic burst firing in thalamocortical neurons. Eur J Neurosci. 2006;23:465–80.PubMedCrossRefGoogle Scholar
  48. 48.
    Akeju O, Loggia ML, Catana C, Pavone KJ, Vazquez R, Rhee J, Contreras Ramirez V, Chonde DB, Izquierdo-Garcia D, Arabasz G, Hsu S, Habeeb K, Hooker JM, Napadow V, Brown EN, Purdon PL. Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-induced unconsciousness. Elife. 2014;3, e04499.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Barttfeld P, Bekinschtein TA, Salles A, Stamatakis EA, Adapa R, Menon DK, Sigman M. Factoring the brain signatures of anesthesia concentration and level of arousal across individuals. Neuroimage Clin. 2015;9:385–91.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Spoormaker VI, Schroter MS, Gleiser PM, Andrade KC, Dresler M, Wehrle R, Samann PG, Czisch M. Development of a large-scale functional brain network during human non-rapid eye movement sleep. J Neurosci. 2010;30:11379–87.PubMedCrossRefGoogle Scholar
  51. 51.
    Halassa MM, Siegle JH, Ritt JT, Ting JT, Feng G, Moore CI. Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nat Neurosci. 2011;14:1118–20.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hartings JA, Temereanca S, Simons DJ. State-dependent processing of sensory stimuli by thalamic reticular neurons. J Neurosci. 2003;23:5264–71.PubMedGoogle Scholar
  53. 53.
    Ni KM, Hou XJ, Yang CH, Dong P, Li Y, Zhang Y, Jiang P, Berg DK, Duan S, Li XM. Selectively driving cholinergic fibers optically in the thalamic reticular nucleus promotes sleep. Elife. 2016;5.Google Scholar
  54. 54.
    Achermann P, Borbely AA. Low-frequency (<1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience. 1997;81:213–22.PubMedCrossRefGoogle Scholar
  55. 55.
    Murphy M, Bruno MA, Riedner BA, Boveroux P, Noirhomme Q, Landsness EC, Brichant JF, Phillips C, Massimini M, Laureys S, Tononi G, Boly M. Propofol anesthesia and sleep: a high-density EEG study. Sleep. 2011;34:283–91A.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Steriade M, Timofeev I. Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron. 2003;37:563–76.PubMedCrossRefGoogle Scholar
  57. 57.
    Lewis LD, Voigts J, Flores FJ, Schmitt LI, Wilson MA, Halassa MM, Brown EN. Thalamic reticular nucleus induces fast and local modulation of arousal state. Elife. 2015;4, e08760.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Constantinople CM, Bruno RM. Effects and mechanisms of wakefulness on local cortical networks. Neuron. 2011;69:1061–8.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Steriade M, Nunez A, Amzica F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci. 1993;13:3252–65.PubMedGoogle Scholar
  60. 60.
    Lewis LD, Weiner VS, Mukamel EA, Donoghue JA, Eskandar EN, Madsen JR, Anderson WS, Hochberg LR, Cash SS, Brown EN, Purdon PL. Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc Natl Acad Sci U S A. 2012;109:E3377–86.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lukatch HS, Maciver MB. Synaptic mechanisms of thiopental-induced alterations in synchronized cortical activity. Anesthesiology. 1996;84:1425–34.PubMedCrossRefGoogle Scholar
  62. 62.
    Ni Mhuircheartaigh R, Warnaby C, Rogers R, Jbabdi S, Tracey I. Slow-wave activity saturation and thalamocortical isolation during propofol anesthesia in humans. Sci Transl Med. 2013;5:208ra148.Google Scholar
  63. 63.
    Ching S, Purdon PL, Vijayan S, Kopell NJ, Brown EN. A neurophysiological-metabolic model for burst suppression. Proc Natl Acad Sci U S A. 2012;109:3095–100.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Japaridze N, Muthuraman M, Reinicke C, Moeller F, Anwar AR, Mideksa KG, Pressler R, Deuschl G, Stephani U, Siniatchkin M. Neuronal networks during burst suppression as revealed by source analysis. PLoS One. 2015;10, e0123807.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Lukatch HS, Kiddoo CE, Maciver MB. Anesthetic-induced burst suppression EEG activity requires glutamate-mediated excitatory synaptic transmission. Cereb Cortex. 2005;15:1322–31.PubMedCrossRefGoogle Scholar
  66. 66.
    Crick F, Koch C. A framework for consciousness. Nat Neurosci. 2003;6:119–26.PubMedCrossRefGoogle Scholar
  67. 67.
    Engel AK, Singer W. Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci. 2001;5:16–25.PubMedCrossRefGoogle Scholar
  68. 68.
    Cantero JL, Atienza M, Madsen JR, Stickgold R. Gamma EEG dynamics in neocortex and hippocampus during human wakefulness and sleep. Neuroimage. 2004;22:1271–80.PubMedCrossRefGoogle Scholar
  69. 69.
    John ER, Prichep LS, Kox W, Valdes-Sosa P, Bosch-Bayard J, Aubert E, Tom M, di Michele F, Gugino LD. Invariant reversible QEEG effects of anesthetics. Conscious Cogn. 2001;10:165–83.PubMedCrossRefGoogle Scholar
  70. 70.
    Sleigh JW, Steyn-Ross DA, Steyn-Ross ML, Williams ML, Smith P. Comparison of changes in electroencephalographic measures during induction of general anaesthesia: influence of the gamma frequency band and electromyogram signal. Br J Anaesth. 2001;86:50–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Maquet P, Degueldre C, Delfiore G, Aerts J, Peters JM, Luxen A, Franck G. Functional neuroanatomy of human slow wave sleep. J Neurosci. 1997;17:2807–12.PubMedGoogle Scholar
  72. 72.
    Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci. 2008;9:370–86.PubMedCrossRefGoogle Scholar
  73. 73.
    Nofzinger EA, Mintun MA, Wiseman M, Kupfer DJ, Moore RY. Forebrain activation in REM sleep: an FDG PET study. Brain Res. 1997;770(1-2):192–201.PubMedCrossRefGoogle Scholar
  74. 74.
    Kaisti KK, Langsjo JW, Aalto S, Oikonen V, Sipila H, Teras M, Hinkka S, Metsahonkala L, Scheinin H. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology. 2003;99:603–13.PubMedCrossRefGoogle Scholar
  75. 75.
    Kaisti KK, Metsahonkala L, Teras M, Oikonen V, Aalto S, Jaaskelainen S, Hinkka S, Scheinin H. Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiology. 2002;96:1358–70.PubMedCrossRefGoogle Scholar
  76. 76.
    Veselis RA, Feshchenko VA, Reinsel RA, Dnistrian AM, Beattie B, Akhurst TJ. Thiopental and propofol affect different regions of the brain at similar pharmacologic effects. Anesth Analg. 2004;99:399–408. table of contents.PubMedGoogle Scholar
  77. 77.
    Baars BJ, Ramsoy TZ, Laureys S. Brain, conscious experience and the observing self. Trends Neurosci. 2003;26:671–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Rees G, Kreiman G, Koch C. Neural correlates of consciousness in humans. Nat Rev Neurosci. 2002;3:261–70.PubMedCrossRefGoogle Scholar
  79. 79.
    Laureys S, Goldman S, Phillips C, van Bogaert P, Aerts J, Luxen A, Franck G, Maquet P. Impaired effective cortical connectivity in vegetative state: preliminary investigation using PET. Neuroimage. 1999;9:377–82.PubMedCrossRefGoogle Scholar
  80. 80.
    Nofzinger EA, Buysse DJ, Miewald JM, Meltzer CC, Price JC, Sembrat RC, Ombao H, Reynolds CF, Monk TH, Hall M, Kupfer DJ, Moore RY. Human regional cerebral glucose metabolism during non-rapid eye movement sleep in relation to waking. Brain. 2002;125:1105–15.PubMedCrossRefGoogle Scholar
  81. 81.
    Adapa RM, Davis MH, Stamatakis EA, Absalom AR, Menon DK. Neural correlates of successful semantic processing during propofol sedation. Hum Brain Mapp. 2014;35:2935–49.PubMedCrossRefGoogle Scholar
  82. 82.
    Kerssens C, Hamann S, Peltier S, Hu XP, Byas-Smith MG, Sebel PS. Attenuated brain response to auditory word stimulation with sevoflurane: a functional magnetic resonance imaging study in humans. Anesthesiology. 2005;103:11–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Ramani R, Qiu M, Constable RT. Sevoflurane 0.25 MAC preferentially affects higher order association areas: a functional magnetic resonance imaging study in volunteers. Anesth Analg. 2007;105:648–55.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Heine L, Soddu A, Gomez F, Vanhaudenhuyse A, Tshibanda L, Thonnard M, Charland-Verville V, Kirsch M, Laureys S, Demertzi A. Resting state networks and consciousness: alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness states. Front Psychol. 2012;3:295.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Marino S, Bonanno L, Giorgio A. Functional connectivity in disorders of consciousness: methodological aspects and clinical relevance. Brain Imaging Behav. 2015;10:604–8.CrossRefGoogle Scholar
  86. 86.
    Samann PG, Wehrle R, Hoehn D, Spoormaker VI, Peters H, Tully C, Holsboer F, Czisch M. Development of the brain’s default mode network from wakefulness to slow wave sleep. Cereb Cortex. 2011;21:2082–93.PubMedCrossRefGoogle Scholar
  87. 87.
    Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Bressler SL. Large-scale cortical networks and cognition. Brain Res Brain Res Rev. 1995;20(3):288–304.PubMedCrossRefGoogle Scholar
  89. 89.
    Goldman-Rakic PS. Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci. 1988;11:137–56.PubMedCrossRefGoogle Scholar
  90. 90.
    Mesulam MM. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol. 1990;28(5):597–613.PubMedCrossRefGoogle Scholar
  91. 91.
    Martuzzi R, Ramani R, Qiu M, Rajeevan N, Constable RT. Functional connectivity and alterations in baseline brain state in humans. Neuroimage. 2010;49:823–34.PubMedCrossRefGoogle Scholar
  92. 92.
    Greicius MD, Kiviniemi V, Tervonen O, Vainionpaa V, Alahuhta S, Reiss AL, Menon V. Persistent default-mode network connectivity during light sedation. Hum Brain Mapp. 2008;29:839–47.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Horovitz SG, Braun AR, Carr WS, Picchioni D, Balkin TJ, Fukunaga M, Duyn JH. Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci U S A. 2009;106:11376–81.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC, Balkin TJ, Duyn JH. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp. 2008;29:671–82.PubMedCrossRefGoogle Scholar
  95. 95.
    Koike T, Kan S, Misaki M, Miyauchi S. Connectivity pattern changes in default-mode network with deep non-REM and REM sleep. Neurosci Res. 2011;69:322–30.PubMedCrossRefGoogle Scholar
  96. 96.
    Larson-Prior LJ, Zempel JM, Nolan TS, Prior FW, Snyder AZ, Raichle ME. Cortical network functional connectivity in the descent to sleep. Proc Natl Acad Sci U S A. 2009;106:4489–94.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Boly M, Perlbarg V, Marrelec G, Schabus M, Laureys S, Doyon J, Pelegrini-Issac M, Maquet P, Benali H. Hierarchical clustering of brain activity during human nonrapid eye movement sleep. Proc Natl Acad Sci U S A. 2012;109:5856–61.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Spoormaker VI, Gleiser PM, Czisch M. Frontoparietal connectivity and hierarchical structure of the brain’s functional network during sleep. Front Neurol. 2012;3:80.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Monti MM, Lutkenhoff ES, Rubinov M, Boveroux P, Vanhaudenhuyse A, Gosseries O, Bruno MA, Noirhomme Q, Boly M, Laureys S. Dynamic change of global and local information processing in propofol-induced loss and recovery of consciousness. PLoS Comput Biol. 2013;9, e1003271.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Schrouff J, Perlbarg V, Boly M, Marrelec G, Boveroux P, Vanhaudenhuyse A, Bruno MA, Laureys S, Phillips C, Pelegrini-Issac M, Maquet P, Benali H. Brain functional integration decreases during propofol-induced loss of consciousness. Neuroimage. 2011;57:198–205.PubMedCrossRefGoogle Scholar
  101. 101.
    Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G. Breakdown of cortical effective connectivity during sleep. Science. 2005;309:2228–32.PubMedCrossRefGoogle Scholar
  102. 102.
    Blain-Moraes S, Tarnal V, Vanini G, Alexander A, Rosen D, Shortal B, Janke E, Mashour GA. Neurophysiological correlates of sevoflurane-induced unconsciousness. Anesthesiology. 2015;122:307–16.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Boly M, Moran R, Murphy M, Boveroux P, Bruno MA, Noirhomme Q, Ledoux D, Bonhomme V, Brichant JF, Tononi G, Laureys S, Friston K. Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J Neurosci. 2012;32:7082–90.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Imas OA, Ropella KM, Ward BD, Wood JD, Hudetz AG. Volatile anesthetics disrupt frontal-posterior recurrent information transfer at gamma frequencies in rat. Neurosci Lett. 2005;387:145–50.PubMedCrossRefGoogle Scholar
  105. 105.
    Ku SW, Lee U, Noh GJ, Jun IG, Mashour GA. Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients. PLoS One. 2011;6, e25155.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Lee U, Kim S, Noh GJ, Choi BM, Hwang E, Mashour GA. The directionality and functional organization of frontoparietal connectivity during consciousness and anesthesia in humans. Conscious Cogn. 2009;18:1069–78.PubMedCrossRefGoogle Scholar
  107. 107.
    Maksimow A, Silfverhuth M, Langsjo J, Kaskinoro K, Georgiadis S, Jaaskelainen S, Scheinin H. Directional connectivity between frontal and posterior brain regions is altered with increasing concentrations of propofol. PLoS One. 2014;9, e113616.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Jordan D, Ilg R, Riedl V, Schorer A, Grimberg S, Neufang S, Omerovic A, Berger S, Untergehrer G, Preibisch C, Schulz E, Schuster T, Schroter M, Spoormaker V, Zimmer C, Hemmer B, Wohlschlager A, Kochs EF, Schneider G. Simultaneous electroencephalographic and functional magnetic resonance imaging indicate impaired cortical top-down processing in association with anesthetic-induced unconsciousness. Anesthesiology. 2013;119:1031–42.PubMedCrossRefGoogle Scholar
  109. 109.
    Lee U, Ku S, Noh G, Baek S, Choi B, Mashour GA. Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology. 2013;118:1264–75.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Ferrarelli F, Massimini M, Sarasso S, Casali A, Riedner BA, Angelini G, Tononi G, Pearce RA. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc Natl Acad Sci U S A. 2010;107:2681–6.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Massimini M, Ferrarelli F, Murphy M, Huber R, Riedner B, Casarotto S, Tononi G. Cortical reactivity and effective connectivity during REM sleep in humans. Cogn Neurosci. 2010;1:176–83.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Casali AG, Gosseries O, Rosanova M, Boly M, Sarasso S, Casali KR, Casarotto S, Bruno MA, Laureys S, Tononi G., Massimini M. A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med. 2013;5:198ra105.Google Scholar
  113. 113.
    Steyn-Ross ML, Steyn-Ross DA, Sleigh JW. Modelling general anaesthesia as a first-order phase transition in the cortex. Prog Biophys Mol Biol. 2004;85:369–85.PubMedCrossRefGoogle Scholar
  114. 114.
    Friedman EB, Sun Y, Moore JT, Hung HT, Meng QC, Perera P, Joiner WJ, Thomas SA, Eckenhoff RG, Sehgal A, Kelz MB. A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia. PLoS One. 2010;5, e11903.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Joiner WJ, Friedman EB, Hung HT, Koh K, Sowcik M, Sehgal A, Kelz MB. Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness. PLoS Genet. 2013;9, e1003605.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Hudson AE, Calderon DP, Pfaff DW, Proekt A. Recovery of consciousness is mediated by a network of discrete metastable activity states. Proc Natl Acad Sci U S A. 2014;111:9283–8.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Langsjo JW, Alkire MT, Kaskinoro K, Hayama H, Maksimow A, Kaisti KK, Aalto S, Aantaa R, Jaaskelainen SK, Revonsuo A, Scheinin H. Returning from oblivion: imaging the neural core of consciousness. J Neurosci. 2012;32:4935–43.PubMedCrossRefGoogle Scholar
  118. 118.
    Hudetz AG. General anesthesia and human brain connectivity. Brain Connect. 2012;2:291–302.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Plourde G, Belin P, Chartrand D, Fiset P, Backman SB, Xie G, Zatorre RJ. Cortical processing of complex auditory stimuli during alterations of consciousness with the general anesthetic propofol. Anesthesiology. 2006;104:448–57.PubMedCrossRefGoogle Scholar
  120. 120.
    Tung A, Szafran MJ, Bluhm B, Mendelson WB. Sleep deprivation potentiates the onset and duration of loss of righting reflex induced by propofol and isoflurane. Anesthesiology. 2002;97:906–11.PubMedCrossRefGoogle Scholar
  121. 121.
    Tung A, Bergmann BM, Herrera S, Cao D, Mendelson WB. Recovery from sleep deprivation occurs during propofol anesthesia. Anesthesiology. 2004;100:1419–26.PubMedCrossRefGoogle Scholar
  122. 122.
    Moote CA, Knill RL. Isoflurane anesthesia causes a transient alteration in nocturnal sleep. Anesthesiology. 1988;69:327–31.PubMedCrossRefGoogle Scholar
  123. 123.
    Gogenur I, Wildschiotz G, Rosenberg J. Circadian distribution of sleep phases after major abdominal surgery. Br J Anaesth. 2008;100:45–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Steinmetz J, Holm-Knudsen R, Eriksen K, Marxen D, Rasmussen LS. Quality differences in postoperative sleep between propofol-remifentanil and sevoflurane anesthesia in infants. Anesth Analg. 2007;104:779–83.PubMedCrossRefGoogle Scholar
  125. 125.
    Boly M, Seth AK. Modes and models in disorders of consciousness science. Arch Ital Biol. 2012;150:172–84.PubMedGoogle Scholar
  126. 126.
    Seth AK, Baars BJ, Edelman DB. Criteria for consciousness in humans and other mammals. Conscious Cogn. 2005;14:119–39.PubMedCrossRefGoogle Scholar
  127. 127.
    Tallon-Baudry C. The roles of gamma-band oscillatory synchrony in human visual cognition. Front Biosci (Landmark Ed). 2009;14:321–32.CrossRefGoogle Scholar
  128. 128.
    Uhlhaas PJ, Pipa G, Neuenschwander S, Wibral M, Singer W. A new look at gamma? High- (>60 Hz) gamma-band activity in cortical networks: function, mechanisms and impairment. Prog Biophys Mol Biol. 2011;105:14–28.PubMedCrossRefGoogle Scholar
  129. 129.
    Breshears JD, Roland JL, Sharma M, Gaona CM, Freudenburg ZV, Tempelhoff R, Avidan MS, Leuthardt EC. Stable and dynamic cortical electrophysiology of induction and emergence with propofol anesthesia. Proc Natl Acad Sci U S A. 2010;107:21170–5.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Hudetz AG, Vizuete JA, Pillay S. Differential effects of isoflurane on high-frequency and low-frequency gamma oscillations in the cerebral cortex and hippocampus in freely moving rats. Anesthesiology. 2011;114:588–95.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Dehaene S, Changeux JP. Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness. PLoS Biol. 2005;3, e141.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Lamme VA. Towards a true neural stance on consciousness. Trends Cogn Sci. 2006;10:494–501.PubMedCrossRefGoogle Scholar
  133. 133.
    Tononi G. Consciousness as integrated information: a provisional manifesto. Biol Bull. 2008;215:216–42.PubMedCrossRefGoogle Scholar
  134. 134.
    Lamme VA, Zipser K, Spekreijse H. Figure-ground activity in primary visual cortex is suppressed by anesthesia. Proc Natl Acad Sci U S A. 1998;95:3263–8.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Baars BJ. The conscious access hypothesis: origins and recent evidence. Trends Cogn Sci. 2002;6:47–52.PubMedCrossRefGoogle Scholar
  136. 136.
    Gaillard R, Dehaene S, Adam C, Clemenceau S, Hasboun D, Baulac M, Cohen L, Naccache L. Converging intracranial markers of conscious access. PLoS Biol. 2009;7, e61.PubMedCrossRefGoogle Scholar
  137. 137.
    Dehaene S, Sergent C, Changeux JP. A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc Natl Acad Sci U S A. 2003;100:8520–5.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Tononi G, Edelman GM. Consciousness and complexity. Science. 1998;282:1846–51.PubMedCrossRefGoogle Scholar
  139. 139.
    Tononi G. An information integration theory of consciousness. BMC Neurosci. 2004;5:42.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Mudrik L, Faivre N, Koch C. Information integration without awareness. Trends Cogn Sci. 2014;18:488–96.PubMedCrossRefGoogle Scholar
  141. 141.
    Hudetz AG, Liu X, Pillay S. Dynamic repertoire of intrinsic brain states is reduced in propofol-induced unconsciousness. Brain Connect. 2015;5:10–22.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Lee U, Mashour GA, Kim S, Noh GJ, Choi BM. Propofol induction reduces the capacity for neural information integration: implications for the mechanism of consciousness and general anesthesia. Conscious Cogn. 2009;18:56–64.PubMedCrossRefGoogle Scholar
  143. 143.
    Schartner M, Seth A, Noirhomme Q, Boly M, Bruno MA, Laureys S, Barrett A. Complexity of multi-dimensional spontaneous EEG decreases during propofol induced general anaesthesia. PLoS One. 2015;10, e0133532.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Chennu S, O’Connor S, Adapa R, Menon DK, Bekinschtein TA. Brain connectivity dissociates responsiveness from drug exposure during propofol-induced transitions of consciousness. PLoS Comput Biol. 2016;12, e1004669.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    John ER. A field theory of consciousness. Conscious Cogn. 2001;10:184–213.PubMedCrossRefGoogle Scholar
  146. 146.
    Srinivasan R, Russell DP, Edelman GM, Tononi G. Increased synchronization of neuromagnetic responses during conscious perception. J Neurosci. 1999;19:5435–48.PubMedGoogle Scholar
  147. 147.
    Hameroff SR. The entwined mysteries of anesthesia and consciousness: is there a common underlying mechanism? Anesthesiology. 2006;105:400–12.PubMedCrossRefGoogle Scholar
  148. 148.
    Libet B. Do the models offer testable proposals of brain functions for conscious experience? Adv Neurol. 1998;77:213–7.PubMedGoogle Scholar
  149. 149.
    Seth AK, Dienes Z, Cleeremans A, Overgaard M, Pessoa L. Measuring consciousness: relating behavioural and neurophysiological approaches. Trends Cogn Sci. 2008;12:314–21.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of AnaesthesiaCambridge University Hospitals NHS Foundation TrustCambridgeUK

Personalised recommendations