Advertisement

The Memory Labyrinth: Systems, Processes, and Boundaries

  • Robert A. Veselis
Chapter

Abstract

This topical quote was continued as “in the end that’s all there is.” In a sense this highlights how memory makes us uniquely human. As the human mind is the most complex creation in the universe, it stands to reason that memory embodies to a large extent this complexity. When memory fails in the end for some of us, a large portion of our being human also fails. In dementia some basic forms of memory do still exist and function, and functioning begins to rely more and more on stereotypical unconscious rather than recent autobiographical memories. During our whole lives unconscious memories allow us to function in an ever changing world by, for instance, jumping at a loud (potentially dangerous) noise, moving a piece of food to our mouth, or choosing a candy for unknown reasons from among dozens available. These unconscious memories seem to be implemented in the very core of our brains, and the question of whether consciousness can exist in the absence of memories is one of terminology. Certainly, conscious memories can be absent in the presence of consciousness, but a sine qua non of consciousness is the presence of working memory (memory of the here and now, even if the here and now is never remembered).

Keywords

Amygdala/physiology anesthetics Intravenous/pharmacology Anesthetics/pharmacology Brain/drug effects Consciousness Consciousness/drug effects Hippocampus/physiology Memory Memory/drug effects Memory, episodic Memory, short-term Memory, long-term Propofol/pharmacology Receptors, GABA-A/drug effects 

References

  1. 1.
    Tulving E. Multiple memory systems and consciousness. Hum Neurobiol. 1987;6(2):67–80.PubMedGoogle Scholar
  2. 2.
    Tulving E, Schacter DL. Priming and human memory systems. Science. 1990;247(4940):301–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Tulving E. Memory systems and the brain. Clin Neuropharmacol. 1992;15 Suppl 1 Pt A:327A–8A.Google Scholar
  4. 4.
    Zola-Morgan SM, Squire LR. The primate hippocampal formation: evidence for a time-limited role in memory storage. Science. 1990;250(4978):288–90.PubMedCrossRefGoogle Scholar
  5. 5.
    Squire LR, Zola-Morgan S. The medial temporal lobe memory system. Science. 1991;253(5026):1380–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Zola-Morgan S, Squire LR. Neuroanatomy of memory. Annu Rev Neurosci. 1993;16:547–63.PubMedCrossRefGoogle Scholar
  7. 7.
    Cooper SJ, Donald O. Hebb’s synapse and learning rule: a history and commentary. Neurosci Biobehav Rev. 2005;28(8):851–74.PubMedCrossRefGoogle Scholar
  8. 8.
    Hebb DO. The organization of behavior; a neuropsychological theory. New York: Wiley; 1949. p. xix, 335.Google Scholar
  9. 9.
    McGaugh JL. Memory—a century of consolidation. Science. 2000;287(5451):248–51.PubMedCrossRefGoogle Scholar
  10. 10.
    Rudoy JD, et al. Strengthening individual memories by reactivating them during sleep. Science. 2009;326(5956):1079.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Gais S, et al. Sleep transforms the cerebral trace of declarative memories. Proc Natl Acad Sci. 2007;104(47):18778–83.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Axmacher N, Haupt S, Fernandez G, Elger CE, Fell J. The role of sleep in declarative memory consolidation: direct evidence by intracranial EEG. Cereb Cortex. 2008;18(3):500–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Hui K, Fisher CE. The ethics of molecular memory modification. J Med Ethics. 2015;41(7):515–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Hongpaisan J, Alkon DL. A structural basis for enhancement of long-term associative memory in single dendritic spines regulated by PKC. Proc Natl Acad Sci U S A. 2007;104(49):19571–6.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Voss JL, Paller KA. Bridging divergent neural models of recognition memory: introduction to the special issue and commentary on key issues. Hippocampus. 2010;20(11):1171–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Elfman KW, Parks CM, Yonelinas AP. Testing a neurocomputational model of recollection, familiarity, and source recognition. J Exp Psychol Learn Mem Cogn. 2008;34(4):752–68.PubMedCrossRefGoogle Scholar
  17. 17.
    Cohen NJ, Squire LR. Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science. 1980;210(4466):207–10.PubMedCrossRefGoogle Scholar
  18. 18.
    Heindel WC, et al. Neuropsychological evidence for multiple implicit memory systems: a comparison of Alzheimer’s, Huntington’s, and Parkinson’s disease patients. J Neurosci. 1989;9(2):582–7.PubMedGoogle Scholar
  19. 19.
    Shallice T, Warrington EK. Independent functioning of verbal memory stores: a neuropsychological study. Q J Exp Psychol. 1970;22(2):261–73.PubMedCrossRefGoogle Scholar
  20. 20.
    Baddeley AD, Warrington EK. Amnesia and the distinction between long- and short-term memory. J Verbal Learn Verbal Behav. 1970;9:176–89.CrossRefGoogle Scholar
  21. 21.
    Baddeley A. The concept of episodic memory. Philos Trans R Soc Lond B Biol Sci. 2001;356(1413):1345–50.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Atkinson RC, Shiffrin RM. The control of short-term memory. Sci Am. 1971;225(2):82–90.PubMedCrossRefGoogle Scholar
  23. 23.
    Melton AW. Memory. Science. 1963;140(3562):82–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Peterson LR, Peterson MJ. Short-term retention of individual verbal items. J Exp Psychol. 1959;58:193–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Brown J. Some tests of the decay theory of immediate memory. Q J Exp Psychol. 1958;10:12–21.CrossRefGoogle Scholar
  26. 26.
    Talmi D, et al. Neuroimaging the serial position curve. A test of single-store versus dual-store models. Psychol Sci. 2005;16(9):716–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Howard MW, Kahana MJ. A distributed representation of temporal context. J Math Psychol. 2002;46:269.CrossRefGoogle Scholar
  28. 28.
    Baddeley A. Working memory. In: Gazzaniga MS, editor. The cognitive neurosciences. Cambridge: MIT Press; 1995. p. 755–64.Google Scholar
  29. 29.
    Lisman JE, Jensen O. The theta-gamma neural code. Neuron. 2013;77(6):1002–16.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lisman JE, Idiart MA. Storage of 7 +/− 2 short-term memories in oscillatory subcycles. Science. 1995;267(5203):1512–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Pandit JJ. Acceptably aware during general anaesthesia: ‘dysanaesthesia’—the uncoupling of perception from sensory inputs. Conscious Cogn. 2014;27:194–212.PubMedCrossRefGoogle Scholar
  32. 32.
    Baars BJ, Franklin S. How conscious experience and working memory interact. Trends Cogn Sci. 2003;7(4):166–72.PubMedCrossRefGoogle Scholar
  33. 33.
    Squire LR, Knowlton B, Musen G. The structure and organization of memory. Annu Rev Psychol. 1993;44:453–95.PubMedCrossRefGoogle Scholar
  34. 34.
    Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957;20:11–21.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hebb DO, Penfield W. Human behavior after extensive bilateral removal from the frontal lobes. Arch Neurol Psychiatry. 1940;44(2):421–38.CrossRefGoogle Scholar
  36. 36.
    Jobst BC, Cascino GD. Resective epilepsy surgery for drug-resistant focal epilepsy: a review. JAMA. 2015;313(3):285–93.PubMedCrossRefGoogle Scholar
  37. 37.
    Skirrow C, et al. Temporal lobe surgery in childhood and neuroanatomical predictors of long-term declarative memory outcome. Brain. 2014;138:80–93.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Zola-Morgan S, Squire LR, Amaral DG. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci. 1986;6(10):2950–67.PubMedGoogle Scholar
  39. 39.
    Eichenbaum H. The hippocampus and mechanisms of declarative memory. Behav Brain Res. 1999;103(2):123–33.PubMedCrossRefGoogle Scholar
  40. 40.
    Jacoby LL. Invariance in automatic influences of memory: toward a user’s guide for the process-dissociation procedure. J Exp Psychol Learn Mem Cogn. 1998;24(1):3–26.PubMedCrossRefGoogle Scholar
  41. 41.
    Winters BD, Saksida LM, Bussey TJ. Object recognition memory: neurobiological mechanisms of encoding, consolidation and retrieval. Neurosci Biobehav Rev. 2008;32(5):1055–70.PubMedCrossRefGoogle Scholar
  42. 42.
    Smith CN, et al. When recognition memory is independent of hippocampal function. Proc Natl Acad Sci. 2014;111(27):9935–40.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Tulving E. Episodic memory and common sense: how far apart? Philos Trans R Soc Lond B Biol Sci. 2001;356(1413):1505–15.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Gelbard-Sagiv H, et al. Internally generated reactivation of single neurons in human hippocampus during free recall. Science. 2008;322(5898):96–101.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Tulving E. Episodic memory: from mind to brain. Annu Rev Psychol. 2002;53:1–25.PubMedCrossRefGoogle Scholar
  46. 46.
    Clayton NS, Dickinson A. Episodic-like memory during cache recovery by scrub jays. Nature. 1998;395(6699):272–4.PubMedCrossRefGoogle Scholar
  47. 47.
    Fortin NJ, Wright SP, Eichenbaum H. Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature. 2004;431(7005):188–91.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ergorul C, Eichenbaum H. The hippocampus and memory for “what,” “where,” and “when”. Learn Mem. 2004;11(4):397–405.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Shrager Y, et al. Spatial memory and the human hippocampus. Proc Natl Acad Sci U S A. 2007;104(8):2961–6.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Pastalkova E, et al. Storage of spatial information by the maintenance mechanism of LTP. Science. 2006;313(5790):1141–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Broadbent NJ, Squire LR, Clark RE. Spatial memory, recognition memory, and the hippocampus. Proc Natl Acad Sci U S A. 2004;101:14515–20.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Poucet B, Save E, Lenck-Santini PP. Sensory and memory properties of hippocampal place cells. Rev Neurosci. 2000;11(2–3):95–111.PubMedGoogle Scholar
  53. 53.
    Alme CB, et al. Place cells in the hippocampus: eleven maps for eleven rooms. Proc Natl Acad Sci U S A. 2014;111:18428–35.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kahana MJ, et al. Human theta oscillations exhibit task dependence during virtual maze navigation. Nature. 1999;399(6738):781–4.PubMedCrossRefGoogle Scholar
  55. 55.
    Squire LR. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev. 1992;99(2):195–231.PubMedCrossRefGoogle Scholar
  56. 56.
    Saksida LM. Neuroscience. Remembering outside the box. Science. 2009;325(5936):40–1.PubMedCrossRefGoogle Scholar
  57. 57.
    Windhorst C. The slave model of autobiographical memory. Cogn Process. 2005;6(4):253–65.PubMedCrossRefGoogle Scholar
  58. 58.
    Sanders RD, et al. Unresponsiveness not equal unconsciousness. Anesthesiology. 2012;116(4):946–59.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Mashour GA. Integrating the science of consciousness and anesthesia. Anesth Analg. 2006;103(4):975–82.PubMedCrossRefGoogle Scholar
  60. 60.
    Pandit JJ. Isolated forearm—or isolated brain? Interpreting responses during anaesthesia—or ‘dysanaesthesia’. Anaesthesia. 2013;68(10):995–1000.PubMedCrossRefGoogle Scholar
  61. 61.
    Wixted JT. The psychology and neuroscience of forgetting. Annu Rev Psychol. 2004;55:235–69.PubMedCrossRefGoogle Scholar
  62. 62.
    Parker ES, Cahill L, McGaugh JL. A case of unusual autobiographical remembering. Neurocase. 2006;12(1):35–49.PubMedCrossRefGoogle Scholar
  63. 63.
    Lynch MA. Long-term potentiation and memory. Physiol Rev. 2004;84(1):87–136.PubMedCrossRefGoogle Scholar
  64. 64.
    Hinrichs JV, Ghoneim MM, Mewaldt SP. Diazepam and memory: retrograde facilitation produced by interference reduction. Psychopharmacology (Berl). 1984;84(2):158–62.CrossRefGoogle Scholar
  65. 65.
    Medved MI, Hirst W. Islands of memory: autobiographical remembering in amnestics. Memory. 2006;14(3):276–88.PubMedCrossRefGoogle Scholar
  66. 66.
    Gilboa A. Autobiographical and episodic memory—one and the same? Evidence from prefrontal activation in neuroimaging studies. Neuropsychologia. 2004;42(10):1336–49.PubMedCrossRefGoogle Scholar
  67. 67.
    Burianova H, Grady CL. Common and unique neural activations in autobiographical, episodic, and semantic retrieval. J Cogn Neurosci. 2007;19(9):1520–34.PubMedCrossRefGoogle Scholar
  68. 68.
    Fischer S, et al. Motor memory consolidation in sleep shapes more effective neuronal representations. J Neurosci. 2005;25(49):11248–55.PubMedCrossRefGoogle Scholar
  69. 69.
    Brashers-Krug T, Shadmehr R, Bizzi E. Consolidation in human motor memory. Nature. 1996;382(6588):252–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Wixted JT. On common ground: Jost’s (1897) law of forgetting and Ribot’s (1881) law of retrograde amnesia. Psychol Rev. 2004;111(4):864–79.PubMedCrossRefGoogle Scholar
  71. 71.
    Wixted JT, Carpenter SK. The Wickelgren power law and the Ebbinghaus savings function. Psychol Sci. 2007;18(2):133–4.PubMedCrossRefGoogle Scholar
  72. 72.
    Pryor KO, et al. Visual P2-N2 complex and arousal at the time of encoding predict the time domain characteristics of amnesia for multiple intravenous anesthetic drugs in humans. Anesthesiology. 2010;113(2):313–26.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kapur S, et al. Neuroanatomical correlates of encoding in episodic memory: levels of processing effect. Proc Natl Acad Sci U S A. 1994;91(6):2008–11.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Craik FIM, Lockhart RS. Levels of processing—framework for memory research. J Verbal Learn Verbal Behav. 1972;11(6):671–84.CrossRefGoogle Scholar
  75. 75.
    Dehaene S, et al. Imaging unconscious semantic priming. Nature. 1998;395(6702):597–600.PubMedCrossRefGoogle Scholar
  76. 76.
    Elfman KW, Yonelinas AP. Recollection and familiarity exhibit dissociable similarity gradients: a test of the complementary learning systems model. J Cogn Neurosci. 2014;1–17.Google Scholar
  77. 77.
    Murray MM, Foxe JJ, Wylie GR. The brain uses single-trial multisensory memories to discriminate without awareness. Neuroimage. 2005;27(2):473–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Busse L, et al. The spread of attention across modalities and space in a multisensory object. Proc Natl Acad Sci U S A. 2005;102(51):18751–6.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Shtyrov Y, Hauk O, Pulvermuller F. Distributed neuronal networks for encoding category-specific semantic information: the mismatch negativity to action words. Eur J Neurosci. 2004;19(4):1083–92.PubMedCrossRefGoogle Scholar
  80. 80.
    Picton TW, et al. Mismatch negativity: different water in the same river. Audiol Neurootol. 2000;5(3–4):111–39.PubMedCrossRefGoogle Scholar
  81. 81.
    Näätänen R. Attention and brain function. Hillsdale, NJ: L. Erlbaum; 1992. p. 494.Google Scholar
  82. 82.
    Pryor KO, et al. Effect of propofol on the medial temporal lobe emotional memory system: a functional magnetic resonance imaging study in human subjects. Br J Anaesth. 2015;115 Suppl 1:i104–13.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Pryor KO, et al. Enhanced visual memory effect for negative versus positive emotional content is potentiated at sub-anaesthetic concentrations of thiopental. Br J Anaesth. 2004;93(3):348–55.PubMedCrossRefGoogle Scholar
  84. 84.
    Henson RN, Gagnepain P. Predictive, interactive multiple memory systems. Hippocampus. 2010;20(11):1315–26.PubMedCrossRefGoogle Scholar
  85. 85.
    Shimamura AP. Hierarchical relational binding in the medial temporal lobe: the strong get stronger. Hippocampus. 2010;20(11):1206–16.PubMedCrossRefGoogle Scholar
  86. 86.
    Cowell RA, Bussey TJ, Saksida LM. Components of recognition memory: dissociable cognitive processes or just differences in representational complexity? Hippocampus. 2010;20(11):1245–62.PubMedCrossRefGoogle Scholar
  87. 87.
    Eichenbaum H. Time cells in the hippocampus: a new dimension for mapping memories. Nat Rev Neurosci. 2014;15(11):732–44.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Rose M, Haider H, Buchel C. The emergence of explicit memory during learning. Cereb Cortex. 2010;20(12):2787–97.PubMedCrossRefGoogle Scholar
  89. 89.
    Veselis RA, et al. Propofol and midazolam inhibit conscious memory processes very soon after encoding: an event-related potential study of familiarity and recollection in volunteers. Anesthesiology. 2009;110(2):295–312.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Rugg MD, Yonelinas AP. Human recognition memory: a cognitive neuroscience perspective. Trends Cogn Sci. 2003;7(7):313–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Wais PE, Mickes L, Wixted JT. Remember/know judgments probe degrees of recollection. J Cogn Neurosci. 2008;20(3):400–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Stratmann G, et al. Effect of general anesthesia in infancy on long-term recognition memory in humans and rats. Neuropsychopharmacology. 2014;39(10):2275–87.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Eichenbaum H. Remember that? Or does it just seem familiar? A sophisticated test for assessing memory in humans and animals reveals a specific cognitive impairment following general anesthesia in infancy. Neuropsychopharmacology. 2014;39(10):2273–4.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Hemmings HC, Jevtovic-Todorovic V. Special issue on anaesthetic neurotoxicity and neuroplasticity. Br J Anaesth. 2013;110 Suppl 1:i1–2.PubMedCrossRefGoogle Scholar
  95. 95.
    Yonelinas AP. Receiver-operating characteristics in recognition memory: evidence for a dual-process model. J Exp Psychol Learn Mem Cogn. 1994;20(6):1341–54.PubMedCrossRefGoogle Scholar
  96. 96.
    Yonelinas AP, et al. Signal-detection, threshold, and dual-process models of recognition memory: ROCs and conscious recollection. Conscious Cogn. 1996;5(4):418–41.PubMedCrossRefGoogle Scholar
  97. 97.
    Wixted JT. Dual-process theory and signal-detection theory of recognition memory. Psychol Rev. 2007;114(1):152–76.PubMedCrossRefGoogle Scholar
  98. 98.
    Sauvage MM, et al. Recognition memory: opposite effects of hippocampal damage on recollection and familiarity. Nat Neurosci. 2008;11(1):16–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Wais PE, et al. The hippocampus supports both the recollection and the familiarity components of recognition memory. Neuron. 2006;49(3):459–66.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Yonelinas AP, et al. Recollection and familiarity deficits in amnesia: convergence of remember-know, process dissociation, and receiver operating characteristic data. Neuropsychology. 1998;12(3):323–39.PubMedCrossRefGoogle Scholar
  101. 101.
    Duzel E, et al. Brain activity evidence for recognition without recollection after early hippocampal damage. Proc Natl Acad Sci U S A. 2001;98(14):8101–6.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Kahn I, Davachi L, Wagner AD. Functional-neuroanatomic correlates of recollection: implications for models of recognition memory. J Neurosci. 2004;24(17):4172–80.PubMedCrossRefGoogle Scholar
  103. 103.
    Yonelinas AP, et al. Separating the brain regions involved in recollection and familiarity in recognition memory. J Neurosci. 2005;25(11):3002–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Curran T, et al. Combined pharmacological and electrophysiological dissociation of familiarity and recollection. J Neurosci. 2006;26(7):1979–85.PubMedCrossRefGoogle Scholar
  105. 105.
    Daselaar SM, Fleck MS, Cabeza R. Triple dissociation in the medial temporal lobes: recollection, familiarity, and novelty. J Neurophysiol. 2006;96(4):1902–11.PubMedCrossRefGoogle Scholar
  106. 106.
    Curran T, Cleary AM. Using ERPs to dissociate recollection from familiarity in picture recognition. Brain Res Cogn Brain Res. 2003;15(2):191–205.PubMedCrossRefGoogle Scholar
  107. 107.
    Opitz B, Cornell S. Contribution of familiarity and recollection to associative recognition memory: insights from event-related potentials. J Cogn Neurosci. 2006;18(9):1595–605.PubMedCrossRefGoogle Scholar
  108. 108.
    MacKenzie G, Donaldson DI. Dissociating recollection from familiarity: electrophysiological evidence that familiarity for faces is associated with a posterior old/new effect. Neuroimage. 2007;36(2):454–63.PubMedCrossRefGoogle Scholar
  109. 109.
    Warren-Gash C, Zeman A. Is there anything distinctive about epileptic deja vu? J Neurol Neurosurg Psychiatry. 2014;85(2):143–7.PubMedCrossRefGoogle Scholar
  110. 110.
    O’Connor AR, Moulin CJ. Deja vu experiences in healthy subjects are unrelated to laboratory tests of recollection and familiarity for word stimuli. Front Psychol. 2013;4:881.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Malecki M. Familiarity transfer as an explanation of the deja vu effect. Psychol Rep. 2015;116(3):955–82.PubMedCrossRefGoogle Scholar
  112. 112.
    Bartolomei F, et al. Cortical stimulation study of the role of rhinal cortex in deja vu and reminiscence of memories. Neurology. 2004;63(5):858–64.PubMedCrossRefGoogle Scholar
  113. 113.
    Fuentealba P, Steriade M. The reticular nucleus revisited: intrinsic and network properties of a thalamic pacemaker. Prog Neurobiol. 2005;75(2):125–41.PubMedCrossRefGoogle Scholar
  114. 114.
    Rempel-Clower NL, et al. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J Neurosci. 1996;16(16):5233–55.PubMedGoogle Scholar
  115. 115.
    Corkin S. What’s new with the amnesic patient H.M.? Nat Rev Neurosci. 2002;3(2):153–60.PubMedCrossRefGoogle Scholar
  116. 116.
    Varela F, et al. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci. 2001;2(4):229–39.PubMedCrossRefGoogle Scholar
  117. 117.
    Dehaene S, et al. Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci. 2006;10(5):204–11.PubMedCrossRefGoogle Scholar
  118. 118.
    Buzsaki G. Theta oscillations in the hippocampus. Neuron. 2002;33(3):325–40.PubMedCrossRefGoogle Scholar
  119. 119.
    Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304(5679):1926–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Fell J, et al. Rhinal-hippocampal theta coherence during declarative memory formation: interaction with gamma synchronization? Eur J Neurosci. 2003;17(5):1082–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Mormann F, et al. Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus. 2005;15(7):890–900.PubMedCrossRefGoogle Scholar
  122. 122.
    Canolty RT, et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313(5793):1626–8.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Osipova D, et al. Theta and gamma oscillations predict encoding and retrieval of declarative memory. J Neurosci. 2006;26(28):7523–31.PubMedCrossRefGoogle Scholar
  124. 124.
    Nyhus E, Curran T. Functional role of gamma and theta oscillations in episodic memory. Neurosci Biobehav Rev. 2010;34(7):1023–35.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Lega B, et al. Slow-theta-to-gamma phase-amplitude coupling in human hippocampus supports the formation of new episodic memories. Cereb Cortex. 2014;26:268–78.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Roux F, Uhlhaas PJ. Working memory and neural oscillations: alpha-gamma versus theta-gamma codes for distinct WM information? Trends Cogn Sci. 2014;18(1):16–25.PubMedCrossRefGoogle Scholar
  127. 127.
    Perouansky M, et al. Slowing of the hippocampal theta rhythm correlates with anesthetic-induced amnesia. Anesthesiology. 2010;113(6):1299–309.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    La Vaque TJ. The history of EEG Hans Berger. J Neurother. 1999;3(2):1–9.CrossRefGoogle Scholar
  129. 129.
    Knoblauch V, et al. Homeostatic control of slow-wave and spindle frequency activity during human sleep: effect of differential sleep pressure and brain topography. Cereb Cortex. 2002;12(10):1092–100.PubMedCrossRefGoogle Scholar
  130. 130.
    Baker PM, et al. Disruption of coherent oscillations in inhibitory networks with anesthetics: role of GABA(A) receptor desensitization. J Neurophysiol. 2002;88(5):2821–33.PubMedCrossRefGoogle Scholar
  131. 131.
    Caraiscos VB, et al. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A. 2004;101(10):3662–7.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Cheng VY, et al. {alpha}5GABAA receptors mediate the amnestic but not sedative-hypnotic effects of the general anesthetic etomidate. J Neurosci. 2006;26(14):3713–20.PubMedCrossRefGoogle Scholar
  133. 133.
    Saab BJ, et al. Short-term memory impairment after isoflurane in mice is prevented by the alpha5 gamma-aminobutyric acid type A receptor inverse agonist L-655,708. Anesthesiology. 2010;113(5):1061–71.PubMedCrossRefGoogle Scholar
  134. 134.
    Lecker I, et al. Potentiation of GABAA receptor activity by volatile anaesthetics is reduced by α5GABAA receptor-preferring inverse agonists. Br J Anaesth. 2013;110 Suppl 1:i73–81.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Banks MI, White JA, Pearce RA. Interactions between distinct GABA(A) circuits in hippocampus. Neuron. 2000;25(2):449–57.PubMedCrossRefGoogle Scholar
  136. 136.
    White JA, et al. Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm. Proc Natl Acad Sci U S A. 2000;97(14):8128–33.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Benkwitz C, Banks MI, Pearce RA. Influence of GABAA receptor gamma2 splice variants on receptor kinetics and isoflurane modulation. Anesthesiology. 2004;101(4):924–36.PubMedCrossRefGoogle Scholar
  138. 138.
    Verbny YI, Merriam EB, Banks MI. Modulation of gamma-aminobutyric acid type A receptor-mediated spontaneous inhibitory postsynaptic currents in auditory cortex by midazolam and isoflurane. Anesthesiology. 2005;102(5):962–9.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Burlingame RH, et al. Subhypnotic doses of isoflurane impair auditory discrimination in rats. Anesthesiology. 2007;106(4):754–62.PubMedCrossRefGoogle Scholar
  140. 140.
    Baddeley AD. Working memory. Science. 1992;255:556–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Baddeley A. The fractionation of working memory. Proc Natl Acad Sci U S A. 1996;93(24):13468–72.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Blumenfeld RS, Ranganath C. Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. J Neurosci. 2006;26(3):916–25.PubMedCrossRefGoogle Scholar
  143. 143.
    Ranganath C, Cohen MX, Brozinsky CJ. Working memory maintenance contributes to long-term memory formation: neural and behavioral evidence. J Cogn Neurosci. 2005;17(7):994–1010.PubMedCrossRefGoogle Scholar
  144. 144.
    Wager TD, Smith EE. Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci. 2003;3(4):255–74.PubMedCrossRefGoogle Scholar
  145. 145.
    Muller NG, Machado L, Knight RT. Contributions of subregions of the prefrontal cortex to working memory: evidence from brain lesions in humans. J Cogn Neurosci. 2002;14(5):673–86.PubMedCrossRefGoogle Scholar
  146. 146.
    Ward LM. Synchronous neural oscillations and cognitive processes. Trends Cogn Sci. 2003;7(12):553–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Jensen O, Lisman JE. Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends Neurosci. 2005;28(2):67–72.PubMedCrossRefGoogle Scholar
  148. 148.
    Chakrabarti BK, Basu A. Neural network modeling. Prog Brain Res. 2008;168:155–68.PubMedCrossRefGoogle Scholar
  149. 149.
    Veselis RA, Reinsel R, Wronski M. Analytical methods to differentiate similar electroencephalographic spectra: neural network and discriminant analysis. J Clin Monit. 1993;9(4):257–67.PubMedCrossRefGoogle Scholar
  150. 150.
    Veselis RA, et al. Use of neural network analysis to classify electroencephalographic patterns against depth of midazolam sedation in intensive care unit patients. J Clin Monit. 1991;7(3):259–67.PubMedCrossRefGoogle Scholar
  151. 151.
    Kloppel B. Application of neural networks for EEG analysis. Considerations and first results. Neuropsychobiology. 1994;29(1):39–46.PubMedCrossRefGoogle Scholar
  152. 152.
    Kloppel B. Neural networks as a new method for EEG analysis. A basic introduction. Neuropsychobiology. 1994;29(1):33–8.PubMedCrossRefGoogle Scholar
  153. 153.
    Kasabov NK. NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw. 2014;52:62–76.PubMedCrossRefGoogle Scholar
  154. 154.
    Gulyas A, et al. Navigable networks as Nash equilibria of navigation games. Nat Commun. 2015;6:7651.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Duvernoy HM, Bourgouin P. The human hippocampus: functional anatomy, vascularization and serial sections with MRI. 2nd completely rev. and expanded ed. Berlin and New York: Springer; 1998. p. viii, 213.Google Scholar
  156. 156.
    Lisman JE. Hippocampus, II: memory connections. Am J Psychiatry. 2005;162(2):239.PubMedCrossRefGoogle Scholar
  157. 157.
    Wixted JT, et al. Sparse and distributed coding of episodic memory in neurons of the human hippocampus. Proc Natl Acad Sci U S A. 2014;111(26):9621–6.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Rolls ET. A computational theory of episodic memory formation in the hippocampus. Behav Brain Res. 2010;215(2):180–96.PubMedCrossRefGoogle Scholar
  159. 159.
    Elfman KW, Aly M, Yonelinas AP. Neurocomputational account of memory and perception: thresholded and graded signals in the hippocampus. Hippocampus. 2014;24(12):1672–86.PubMedCrossRefGoogle Scholar
  160. 160.
    O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34(1):171–5.PubMedCrossRefGoogle Scholar
  161. 161.
    O’Keefe J. Hippocampus, theta, and spatial memory. Curr Opin Neurobiol. 1993;3(6):917–24.PubMedCrossRefGoogle Scholar
  162. 162.
    Samsonovich AV, Ascoli GA. A simple neural network model of the hippocampus suggesting its pathfinding role in episodic memory retrieval. Learn Mem. 2005;12:193–208.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Shanks DR, et al. Priming intelligent behavior: an elusive phenomenon. PLoS One. 2013;8(4), e56515.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Newell BR, Shanks DR. Unconscious influences on decision making: a critical review. Behav Brain Sci. 2014;37(1):1–19.PubMedCrossRefGoogle Scholar
  165. 165.
    Bullock A. The secret sales pitch: an overview of subliminal advertising. San Jose, CA: Norwich Publishers; 2004. 272 p.Google Scholar
  166. 166.
    Ioannidis JP. Why most published research findings are false. PLoS Med. 2005;2(8), e124.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Johnson VE. Revised standards for statistical evidence. Proc Natl Acad Sci U S A. 2013;110(48):19313–7.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Avidan MS, Wildes TS. Power of negative thinking. Br J Anaesth. 2015;114(1):3–5.PubMedCrossRefGoogle Scholar
  169. 169.
    Yong E. Replication studies: bad copy. Nature. 2012;485(7398):298–300.PubMedCrossRefGoogle Scholar
  170. 170.
    Lequeux P-Y, Hecquet F, Bredas P. Does anesthetic regimen influence implicit memory during general anesthesia? Anesth Analg. 2014;119(5):1174–9. doi: 10.1213/ANE.0000000000000162.PubMedCrossRefGoogle Scholar
  171. 171.
    Hadzidiakos D, et al. Analysis of memory formation during general anesthesia (propofol/remifentanil) for elective surgery using the process-dissociation procedure. Anesthesiology. 2009;111(2):293–301.PubMedCrossRefGoogle Scholar
  172. 172.
    Nadel L, Hardt O. Update on memory systems and processes. Neuropsychopharmacology. 2011;36(1):251–73.PubMedCrossRefGoogle Scholar
  173. 173.
    Berns GS, Cohen JD, Mintun MA. Brain regions responsive to novelty in the absence of awareness. Science. 1997;276(5316):1272–5.PubMedCrossRefGoogle Scholar
  174. 174.
    Andrade J. Learning during anaesthesia: a review. Br J Psychol. 1995;86(Pt 4):479–506.PubMedCrossRefGoogle Scholar
  175. 175.
    Ghoneim MM, Block RI. Learning and memory during general anesthesia. Anesthesiology. 1997;87(2):387–410.PubMedCrossRefGoogle Scholar
  176. 176.
    Genzel L, et al. Light sleep versus slow wave sleep in memory consolidation: a question of global versus local processes? Trends Neurosci. 2014;37(1):10–9.PubMedCrossRefGoogle Scholar
  177. 177.
    Marshall L, Born J. The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn Sci. 2007;11(10):442–50.PubMedCrossRefGoogle Scholar
  178. 178.
    Gais S, Born J. Declarative memory consolidation: mechanisms acting during human sleep. Learn Mem. 2004;11(6):679–85.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Uncapher MR, Rugg MD. Effects of divided attention on fMRI correlates of memory encoding. J Cogn Neurosci. 2005;17(12):1923–35.PubMedCrossRefGoogle Scholar
  180. 180.
    Naveh-Benjamin M, Guez J, Marom M. The effects of divided attention at encoding on item and associative memory. Mem Cognit. 2003;31(7):1021–35.PubMedCrossRefGoogle Scholar
  181. 181.
    Iidaka T, et al. The effect of divided attention on encoding and retrieval in episodic memory revealed by positron emission tomography. J Cogn Neurosci. 2000;12(2):267–80.PubMedCrossRefGoogle Scholar
  182. 182.
    Anderson ND, et al. The effects of divided attention on encoding- and retrieval-related brain activity: a PET study of younger and older adults. J Cogn Neurosci. 2000;12(5):775–92.PubMedCrossRefGoogle Scholar
  183. 183.
    Coull JT. Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol. 1998;55(4):343–61.PubMedCrossRefGoogle Scholar
  184. 184.
    Gardiner JM, Parkin AJ. Attention and recollective experience in recognition memory. Mem Cognit. 1990;18(6):579–83.PubMedCrossRefGoogle Scholar
  185. 185.
    Veselis RA, et al. Information loss over time defines the memory defect of propofol: a comparative response with thiopental and dexmedetomidine. Anesthesiology. 2004;101(4):831–41.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Nelson LE, et al. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003;98(2):428–36.PubMedCrossRefGoogle Scholar
  187. 187.
    Nelson LE, et al. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci. 2002;5(10):979–84.PubMedCrossRefGoogle Scholar
  188. 188.
    Gelegen C, et al. Staying awake—a genetic region that hinders α2 adrenergic receptor agonist-induced sleep. Eur J Neurosci. 2014;40:2311–9.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci. 2008;9(5):370–86.PubMedCrossRefGoogle Scholar
  190. 190.
    Friedman EB, et al. A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia. PLoS One. 2010;5(7), e11903.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Kelz MB, et al. An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci U S A. 2008;105(4):1309–14.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Veselis RA, et al. The comparative amnestic effects of midazolam, propofol, thiopental, and fentanyl at equisedative concentrations. Anesthesiology. 1997;87(4):749–64.PubMedCrossRefGoogle Scholar
  193. 193.
    Ghoneim MM, Hinrichs JV. Drugs, memory and sedation: specificity of effects. Anesthesiology. 1997;87(Oct):734–6.PubMedCrossRefGoogle Scholar
  194. 194.
    Schwartz RH, Milteer R, LeBeau MA. Drug-facilitated sexual assault (‘date rape’). South Med J. 2000;93(6):558–61.PubMedCrossRefGoogle Scholar
  195. 195.
    Kim M, Kim J, Kwon JS. The effect of immediate and delayed word repetition on event-related potential in a continuous recognition task. Brain Res Cogn Brain Res. 2001;11(3):387–96.PubMedCrossRefGoogle Scholar
  196. 196.
    Friedman D. ERPs during continuous recognition memory for words. Biol Psychol. 1990;30:61–87.PubMedCrossRefGoogle Scholar
  197. 197.
    Ghoneim MM, Block RI. Immediate peri-operative memory. Acta Anaesthesiol Scand. 2007;51(8):1054–61.PubMedCrossRefGoogle Scholar
  198. 198.
    Fandakova Y, et al. Age differences in short-term memory binding are related to working memory performance across the lifespan. Psychol Aging. 2014;29(1):140–9.PubMedCrossRefGoogle Scholar
  199. 199.
    Datta D, Arion D, Lewis DA. Developmental expression patterns of GABAA receptor subunits in layer 3 and 5 pyramidal cells of monkey prefrontal cortex. Cereb Cortex. 2015;25(8):2295–305.PubMedCrossRefGoogle Scholar
  200. 200.
    Mashour GA, Avidan MS. Intraoperative awareness: controversies and non-controversies. Br J Anaesth. 2015;115 Suppl 1:i20–6.PubMedCrossRefGoogle Scholar
  201. 201.
    Glannon W. Anaesthesia, amnesia and harm. J Med Ethics. 2014;40:651–7.PubMedCrossRefGoogle Scholar
  202. 202.
    Pandit JJ, Russell IF, Wang M. Interpretations of responses using the isolated forearm technique in general anaesthesia: a debate. Br J Anaesth. 2015;115 Suppl 1:i32–45.PubMedCrossRefGoogle Scholar
  203. 203.
    Kent CD, et al. Psychological impact of unexpected explicit recall of events occurring during surgery performed under sedation, regional anaesthesia, and general anaesthesia: data from the Anesthesia Awareness Registry. Br J Anaesth. 2013;110(3):381–7.PubMedCrossRefGoogle Scholar
  204. 204.
    Whitlock EL, et al. Psychological sequelae of surgery in a prospective cohort of patients from three intraoperative awareness prevention trials. Anesth Analg. 2015;120(1):87–95.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Samuelsson P, Brudin L, Sandin RH. Late psychological symptoms after awareness among consecutively included surgical patients. Anesthesiology. 2007;106(1):26–32.PubMedCrossRefGoogle Scholar
  206. 206.
    Sandin R. Outcome after awareness with explicit recall. Acta Anaesthesiol Belg. 2006;57(4):429–32.PubMedGoogle Scholar
  207. 207.
    Pollard RJ, et al. Intraoperative awareness in a regional medical system: a review of 3 years’ data. Anesthesiology. 2007;106(2):269–74.PubMedCrossRefGoogle Scholar
  208. 208.
    Cook TM, et al. 5th National Audit Project (NAP5) on accidental awareness during general anaesthesia: patient experiences, human factors, sedation, consent, and medicolegal issues. Br J Anaesth. 2014;113(4):560–74.PubMedCrossRefGoogle Scholar
  209. 209.
    Alkire MT, Nathan SV, McReynolds JR. Memory enhancing effect of low-dose sevoflurane does not occur in basolateral amygdala-lesioned rats. Anesthesiology. 2005;103(6):1167–73.PubMedCrossRefGoogle Scholar
  210. 210.
    Starmer AJ, et al. Changes in medical errors after implementation of a handoff program. N Engl J Med. 2014;371(19):1803–12.PubMedCrossRefGoogle Scholar
  211. 211.
    Colligan L, Brick D, Patterson ES. Changes in medical errors with a handoff program. N Engl J Med. 2015;372(5):490–1.PubMedCrossRefGoogle Scholar
  212. 212.
    Cheek DB. Unconscious perception of meaningful sounds during surgical anesthesia as revealed under hypnosis. Am J Clin Hypn. 1959;1(3):101–13.CrossRefGoogle Scholar
  213. 213.
    Levinson BW. States of awareness during anaesthesia: preliminary communication. Br J Anaesth. 1965;37(7):544–6.PubMedCrossRefGoogle Scholar
  214. 214.
    Lubke GH, et al. Dependence of explicit and implicit memory on hypnotic state in trauma patients. Anesthesiology. 1999;90(3):670–80.PubMedCrossRefGoogle Scholar
  215. 215.
    Lubke GH, et al. Memory formation during general anesthesia for emergency cesarean sections. Anesthesiology. 2000;92(4):1029–34.PubMedCrossRefGoogle Scholar
  216. 216.
    Kerssens C, et al. Memory function during propofol and alfentanil anesthesia: predictive value of individual differences. Anesthesiology. 2002;97(2):382–9.PubMedCrossRefGoogle Scholar
  217. 217.
    Kerssens C, Gaither JR, Sebel PS. Preserved memory function during bispectral index-guided anesthesia with sevoflurane for major orthopedic surgery. Anesthesiology. 2009;111(3):518–24. doi: 10.1097/ALN.0b013e3181b05f0b.PubMedCrossRefGoogle Scholar
  218. 218.
    Kerssens C, Ouchi T, Sebel PS. No evidence of memory function during anesthesia with propofol or isoflurane with close control of hypnotic state. Anesthesiology. 2005;102(1):57–62.PubMedCrossRefGoogle Scholar
  219. 219.
    Deeprose C, et al. Unconscious learning during surgery with propofol anaesthesia. Br J Anaesth. 2004;92(2):171–7.PubMedCrossRefGoogle Scholar
  220. 220.
    Deeprose C, et al. Unconscious auditory priming during surgery with propofol and nitrous oxide anaesthesia: a replication. Br J Anaesth. 2005;94(1):57–62.PubMedCrossRefGoogle Scholar
  221. 221.
    Franco A, Malhotra N, Simonovits G. Social science. Publication bias in the social sciences: unlocking the file drawer. Science. 2014;345(6203):1502–5.PubMedCrossRefGoogle Scholar
  222. 222.
    Munte S, et al. Increased reading speed for stories presented during general anesthesia. Anesthesiology. 1999;90(3):662–9.PubMedCrossRefGoogle Scholar
  223. 223.
    Jacoby LL. A process dissociation framework: separating automatic from intentional uses of memory. J Mem Lang. 1991;33(1):1–18.Google Scholar
  224. 224.
    Veselis RA. Memory formation during anaesthesia: plausibility of a neurophysiological basis. Br J Anaesth. 2015;115 Suppl 1:i13–9.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Mashour GA, Alkire MT. Consciousness, anesthesia, and the thalamocortical system. Anesthesiology. 2013;118(1):13–5. doi: 10.1097/ALN.0b013e318277a9c6.PubMedCrossRefGoogle Scholar
  226. 226.
    Mashour GA. Dreaming during anesthesia and sedation. Anesth Analg. 2011;112(5):1008–10.PubMedCrossRefGoogle Scholar
  227. 227.
    DiFrancesco MW, et al. BOLD fMRI in infants under sedation: Comparing the impact of pentobarbital and propofol on auditory and language activation. J Magn Reson Imaging. 2013;38(5):1184–95.PubMedCrossRefGoogle Scholar
  228. 228.
    Plourde G, et al. Attenuation of the 40-hertz auditory steady state response by propofol involves the cortical and subcortical generators. Anesthesiology. 2008;108(2):233–42.PubMedCrossRefGoogle Scholar
  229. 229.
    Veselis R, et al. Auditory rCBF covariation with word rate during drug-induced sedation and unresponsiveness: a H2015 PET study. Brain Cogn. 2004;54(2):142–4.PubMedGoogle Scholar
  230. 230.
    Heinke W, et al. Sequential effects of propofol on functional brain activation induced by auditory language processing: an event-related functional magnetic resonance imaging study. Br J Anaesth. 2004;92(5):641–50.PubMedCrossRefGoogle Scholar
  231. 231.
    Gonano C, et al. Effect of earplugs on propofol requirement and awareness with recall during spinal anesthesia. Minerva Anestesiol. 2010;76(7):504–8.PubMedGoogle Scholar
  232. 232.
    Liu X, et al. Differential effects of deep sedation with propofol on the specific and nonspecific thalamocortical systems: a functional magnetic resonance imaging study. Anesthesiology. 2013;118(1):59–69. doi: 10.1097/ALN.0b013e318277a801.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Hudetz AG. General anesthesia and human brain connectivity. Brain Connect. 2012;2(6):291–302.PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Boveroux P, et al. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology. 2010;113(5):1038–53.PubMedCrossRefGoogle Scholar
  235. 235.
    Lopez-Aranda MF, et al. Role of layer 6 of V2 visual cortex in object-recognition memory. Science. 2009;325(5936):87–9.PubMedCrossRefGoogle Scholar
  236. 236.
    Chen X, et al. Encoding and retrieval of artificial visuoauditory memory traces in the auditory cortex requires the entorhinal cortex. J Neurosci. 2013;33(24):9963–74.PubMedCrossRefGoogle Scholar
  237. 237.
    Baker R, et al. Altered activity in the central medial thalamus precedes changes in the neocortex during transitions into both sleep and propofol anesthesia. J Neurosci. 2014;34(40):13326–35.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    John ER, Prichep LS. The anesthetic cascade: a theory of how anesthesia suppresses consciousness. Anesthesiology. 2005;102(2):447–71.PubMedCrossRefGoogle Scholar
  239. 239.
    John ER, et al. Invariant reversible qEEG effects of anesthetics. Conscious Cogn. 2001;10(2):165–83.PubMedCrossRefGoogle Scholar
  240. 240.
    Liu X, et al. Propofol disrupts functional interactions between sensory and high-order processing of auditory verbal memory. Hum Brain Mapp. 2012;33(10):2487–98.PubMedCrossRefGoogle Scholar
  241. 241.
    Hudetz AG, Pearce R. Suppressing the mind: anesthetic modulation of memory and consciousness. Contemporary clinical neuroscience. Totowa, NJ: Humana; 2010. p. x, 252.Google Scholar
  242. 242.
    Hudetz AG, Vizuete JA, Imas OA. Desflurane selectively suppresses long-latency cortical neuronal response to flash in the rat. Anesthesiology. 2009;111(2):231–9. doi: 10.1097/ALN.0b013e3181ab671e.PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008;322(5903):876–80.PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Imas OA, et al. Isoflurane disrupts anterio-posterior phase synchronization of flash-induced field potentials in the rat. Neurosci Lett. 2006;402(3):216–21.PubMedCrossRefGoogle Scholar
  245. 245.
    Blain-Moraes S, et al. Neurophysiological correlates of sevoflurane-induced unconsciousness. Anesthesiology. 2014;122:307–16.CrossRefGoogle Scholar
  246. 246.
    Lee U, et al. Dissociable network properties of anesthetic state transitions. Anesthesiology. 2011;114(4):872–81.PubMedCrossRefGoogle Scholar
  247. 247.
    Monti MM, et al. Dynamic change of global and local information processing in propofol-induced loss and recovery of consciousness. PLoS Comput Biol. 2013;9(10), e1003271.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Sessler DI, et al. Hospital stay and mortality are increased in patients having a “triple low” of low blood pressure, low bispectral index, and low minimum alveolar concentration of volatile anesthesia. Anesthesiology. 2012;116(6):1195–203.PubMedCrossRefGoogle Scholar
  249. 249.
    Myles PS. Untangling the triple low: causal inference in anesthesia research. Anesthesiology. 2014;121(1):1–3.PubMedCrossRefGoogle Scholar
  250. 250.
    Kertai MD, White WD, Gan TJ. Cumulative duration of “triple low” state of low blood pressure, low bispectral index, and low minimum alveolar concentration of volatile anesthesia is not associated with increased mortality. Anesthesiology. 2014;121(1):18–28.PubMedCrossRefGoogle Scholar
  251. 251.
    Monk TG, et al. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology. 2008;108(1):18–30.PubMedCrossRefGoogle Scholar
  252. 252.
    Rappaport BA, et al. Anesthetic neurotoxicity—clinical implications of animal models. N Engl J Med. 2015;372(9):796–7.PubMedCrossRefGoogle Scholar
  253. 253.
    Riker RR, et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301(5):489–99.PubMedCrossRefGoogle Scholar
  254. 254.
    MacLaren R, et al. A randomized, double-blind pilot study of dexmedetomidine versus midazolam for intensive care unit sedation: patient recall of their experiences and short-term psychological outcomes. J Intensive Care Med. 2015;30(3):167–75.PubMedCrossRefGoogle Scholar
  255. 255.
    Hudetz JA, et al. Ketamine attenuates delirium after cardiac surgery with cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2009;23(5):651–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.AnesthesiologyMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations