The Design of 3D Laser Range Finder for Robot Navigation and Mapping in Industrial Environment with Point Clouds Preprocessing

  • Petr Olivka
  • Milan Mihola
  • Petr Novák
  • Tomáš  Kot
  • Ján  Babjak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9991)

Abstract

This article describes the design of 3D Laser range finder (LRF) for industrial and mine environment. The 3D LRF is designed for usage on middle size robots and can be used for environment mapping and navigation. The design reflects heavy and dirty working conditions in industrial environment and it is equipped by own methane sensor for usage in mine. The process of design started with definition of requirements, follows by dynamic analysis and selection of suitable parts. The housing is designed from stainless steel and it encloses all electrical and mechanical components. The internal control unit is designed to suit modern trends of fog computing. It is equipped with four cores ARM CPU and IMU and it is able to preprocess the acquired point clouds in real time.

Keywords

Robot Mapping Navigation Laser range finder Fog computing Point clouds 

References

  1. 1.
    Bosse, M., Zlot, R., Flick, P.: Zebedee: design of a spring-mounted 3-D range sensor with application to mobile mapping. IEEE Trans. Robot. 28(5), 1104–1119 (2012)CrossRefGoogle Scholar
  2. 2.
    Zhang, J., Singh, S.: LOAM: lidar odometry and mapping in real-time. In: Robotics: Science and Systems Conference (RSS), pp. 109–111 (2014)Google Scholar
  3. 3.
    Cubero, S.: Industrial Robotics: Theory, Modelling and Control. Pro Literatur Verlag, Augsburg (2006). ISBN: 3866112858CrossRefGoogle Scholar
  4. 4.
    Krumnikl, M., Olivka, P.: PWM nonlinearity reduction in microstep- ping unit firmware. Przegld Elektrotechniczny 88(3a), 232–236 (2012)Google Scholar
  5. 5.
    Novák, P., Babjak, J., Kot, T., Olivka, P., Moczulski, W.: Exploration mobile robot for coal mines. In: Hodicky, J. (ed.) MESAS 2015. LNCS, vol. 9055, pp. 209–215. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  6. 6.
    Olivka, P., Krumnikl, M., Moravec, P., Seidl, D.: Calibration of short range 2D laser range finder for 3D SLAM usage. J. Sens. 501, 3715129 (2016)Google Scholar
  7. 7.
    Kot, T., Krys, V., Mostyn, V., Novak, P.: Control system of a mobile robot manipulator. In: 2014 15th International Carpathian Control Conference (ICCC), pp. 258–263. IEEE (2014)Google Scholar
  8. 8.
    I Heart Robotics: More Hokuyo 3D Laser Scanner Images (2009). http://www.iheartrobotics.com/2009/06/more-hokuyo-3d-laser-scanner-images.html
  9. 9.
    Velodyne LiDAR, HDL-64E (2016). http://www.velodynelidar.com/
  10. 10.
    Sick, 2D Laser Scanner LMS111, Online Data Sheet. https://www.sick.com/media/pdf/2/42/842/dataSheet_LMS111-10100_1041114_en.pdf. Accessed 05 May 2016
  11. 11.
    Robotis, Servo Dynamixel MX-64R, e-Manual. http://support.robotis.com/en/product/dynamixel/mx_series/mx-64.htm. Accessed 10 May 2016
  12. 12.
  13. 13.
    PTC Creo Parametric. http://www.ptc.com/cad/creo/parametric. Accessed 15 Apr 2016
  14. 14.

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Petr Olivka
    • 1
  • Milan Mihola
    • 2
  • Petr Novák
    • 2
  • Tomáš  Kot
    • 2
  • Ján  Babjak
    • 2
  1. 1.Department of Computer ScienceFEECS, VŠB – Technical University of OstravaOstravaCzech Republic
  2. 2.Department of RoboticsFME, VŠB – Technical University of OstravaOstravaCzech Republic

Personalised recommendations