Sensing on Robots Inspired by Nature

  • Vignesh Subramaniam
  • Pablo Valdivia y Alvarado
  • Gabriel Weymouth


Biomimetics as a functional study of biological systems has inspired the creation of unconventional robots and sensors that outperform traditional ones. Nature provides cues into unique sensing and propulsion mechanisms that are far superior to traditional systems. This chapter describes a harbor seal-inspired whisker sensor, an octopus-inspired robot, a stingray-inspired robot and autonomous robots with biomimetic sensors developed at Singapore-MIT Alliance for Research and Technology Centre.


Underwater Vehicle Harbor Seal Mantle Length Robotic Fish Underwater Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Beem H, Triantafyllou M (2015) Exquisitely sensitive seal whisker-like sensors detect wakes at large distances. arXiv. doi:arXiv:1501.04582v1
  2. 2.
    Kastelein R, van Gaalen M (1988) The sensitivity of the vibrissae of a Pacific walrus (Odobenus rosmarus divergens) Part 1. Aquat Mammals 14(3):123–133Google Scholar
  3. 3.
    Dehnhardt G (1990) Preliminary results from psychophysical studies on the tactile sensitivity in marine mammals. Sensory abilities of cetaceans, 1st edn. Springer, US, pp 435–446CrossRefGoogle Scholar
  4. 4.
    Dehnhardt G (1994) Tactile size discrimination by a California sea lion (Zalophus californianus) using its mystacial vibrissae. J Comp Physiol A. doi: 10.1007/bf00191851 Google Scholar
  5. 5.
    Dehnhardt G, Dücker G (1996) Tactual discrimination of size and shape by a California sea lion (Zalophus californianus). Anim Learn Behav 24:366–374. doi: 10.3758/bf03199008 CrossRefGoogle Scholar
  6. 6.
    Dehnhardt G, Kaminski A (1995) Sensitivity of the mystacial vibrissae of harbour seals (Phoca vitulina) for size differences of actively touched objects. J Exp Biol 198:2317–2323Google Scholar
  7. 7.
    Dehnhardt G, Mauck B, Hyvärinen H (1998) Ambient temperature does not affect the tactile sensitivity of mystacial vibrissae in harbour seals. J Exp Biol 201:3023–3029Google Scholar
  8. 8.
    Wieskotten S, Dehnhardt G, Mauck B et al (2010) Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal (Phoca vitulina). J Exp Biol 213:2194–2200. doi: 10.1242/jeb.041699 CrossRefGoogle Scholar
  9. 9.
    Wieskotten S, Mauck B, Miersch L et al (2011) Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). J Exp Biol 214:1922–1930. doi: 10.1242/jeb.053926 CrossRefGoogle Scholar
  10. 10.
    Hanke W, Witte M, Miersch L et al (2010) Harbor seal vibrissa morphology suppresses vortex-induced vibrations. J Exp Biol 213:2665–2672. doi: 10.1242/jeb.043216 CrossRefGoogle Scholar
  11. 11.
    Miersch L, Hanke W, Wieskotten S et al (2011) Flow sensing by pinniped whiskers. Philos Trans R Soc B Biol Sci 366:3077–3084. doi: 10.1098/rstb.2011.0155 CrossRefGoogle Scholar
  12. 12.
    Dehnhardt G, Mauck B, Bleckmann H (1998) Seal whiskers detect water movements. Nature 394:235–236. doi: 10.1038/28303 CrossRefGoogle Scholar
  13. 13.
    Weymouth G, Triantafyllou M (2011) Numerical study of seal whisker vibrations. In: 64th annual meeting of the APS division of fluid dynamics. APS, pp Volume 56, Number 18Google Scholar
  14. 14.
    Wieskotten S, Mauck B, Miersch L et al (2011) Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). J Exp Biol 214:1922–1930. doi: 10.1242/jeb.053926 CrossRefGoogle Scholar
  15. 15.
    Valdivia y Alvarado P, Subramaniam V, Triantafyllou M (2012) Design of a bio-inspired whisker sensor for underwater applications. In: IEEE sensors. IEEE, pp 1–4Google Scholar
  16. 16.
    Valdivia y Alvarado P, Subramaniam V, Triantafyllou M (2013) Performance analysis and characterization of bio-inspired whisker sensors for underwater applications. In: IEEE IROS. IEEE, pp 5956–5961Google Scholar
  17. 17.
    FDM 3D printer:
  18. 18.
    Unpublished measurements of Harbor Seal Whisker mechanical properties by Valdivia y Alvarado PGoogle Scholar
  19. 19.
    Mitchinson BN, Gurney K, Redgrave P et al (2004) Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex. Proc R Soc B Biol Sci 271:2509–2516. doi: 10.1098/rspb.2004.2882 CrossRefGoogle Scholar
  20. 20.
    Flexible displacement sensor.
  21. 21.
    Silicone rubbers.
  22. 22.
    Huffard C (2006) Locomotion by Abdopus aculeatus (Cephalopoda: Octopodidae): walking the line between primary and secondary defenses. J Exp Biol 209:3697–3707. doi: 10.1242/jeb.02435 CrossRefGoogle Scholar
  23. 23.
    Wells M (1990) Oxygen extraction and jet propulsion in cephalopods. Can J Zool 68:815–824. doi: 10.1139/z90-117 CrossRefGoogle Scholar
  24. 24.
    Packard A (1969) Jet propulsion and the giant fibre response of Loligo. Nature 221:875–877. doi: 10.1038/221875a0 CrossRefGoogle Scholar
  25. 25.
    Weymouth G, Triantafyllou M (2013) Ultra-fast escape of a deformable jet-propelled body. J Fluid Mech 721:367–385. doi: 10.1017/jfm.2013.65 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hoerner S (1965) Fluid-dynamic drag: practical information on aerodynamic drag and hydrodynamic resistance. Db Hoerner Fluid Dynamics, Alburqueque, N.M.Google Scholar
  27. 27.
    Gosline J, DeMont M (1985) Jet-propelled swimming in squids. Sci Am 252:96–103. doi: 10.1038/scientificamerican0185-96 CrossRefGoogle Scholar
  28. 28.
    Weymouth G, Triantafyllou M (2012) Global vorticity shedding for a shrinking cylinder. J Fluid Mech 702:470–487. doi: 10.1017/jfm.2012.200 CrossRefzbMATHGoogle Scholar
  29. 29.
    Weymouth G, Subramaniam V, Triantafyllou M (2015) Ultra-fast escape maneuver of an octopus-inspired robot. Bioinspir Biomim 10:016016. doi: 10.1088/1748-3190/10/1/016016 CrossRefGoogle Scholar
  30. 30.
    Frith H, Blake R (1995) The mechanical power output and hydromechanical efficiency of northern pike (Esox lucius) fast-starts. J Exp Biol 198:1863–1873Google Scholar
  31. 31.
    Neumeister H, Ripley B, Preuss T, Gilly W (2000) Effects of temperature on escape jetting in the squid Loligo opalescens. J Exp Biol 203:547–557Google Scholar
  32. 32.
    Rosenberger L, Westneat M (1999) Functional morphology of undulatory pectoral fin locomotion in the stingray taeniura lymma (Chondrichthyes: dasyatidae). J Exp Biol 202:3523–3539Google Scholar
  33. 33.
    Rosenberger L (2001) Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J Exp Biol 204:379–394Google Scholar
  34. 34.
    Parson J, Fish F, Nicastro A (2011) Turning performance of batoids: limitations of a rigid body. J Exp Mar Biol Ecol 402:12–18. doi: 10.1016/j.jembe.2011.03.010 CrossRefGoogle Scholar
  35. 35.
    Triantafyllou M, Triantafyllou G (1995) An efficient swimming machine. Sci Am 272:64–70. doi: 10.1038/scientificamerican0395-64 CrossRefGoogle Scholar
  36. 36.
    Anderson J (2002) Maneuvering and stability performance of a robotic tuna. Integr Comp Biol 42:118–126. doi: 10.1093/icb/42.1.118 CrossRefGoogle Scholar
  37. 37.
    Bandyopadhyay P, Donnelly M, Nedderman W, Castano J (1997) A dual flapping foil maneuvering device for low-speed rigid bodies. In: Third international symposium on performance enhancement for marine vehiclesGoogle Scholar
  38. 38.
    Yu J, Tan M, Wang S, Chen E (2004) Development of a biomimetic robotic fish and its control algorithm. IEEE Trans Syst Man Cybern B 34:1798–1810. doi: 10.1109/tsmcb.2004.831151 CrossRefGoogle Scholar
  39. 39.
    Dogangil G, Ozcicek E, Kuzucu A (2005) Design, construction, and control of a robotic dolphin. In: IEEE ROBIO. IEEE, pp 51–56Google Scholar
  40. 40.
    Kato N (2000) Control performance in the horizontal plane of a fish robot with mechanical pectoral fins. IEEE J Oceanic Eng 25:121–129. doi: 10.1109/48.820744 CrossRefGoogle Scholar
  41. 41.
    Colgate J, Lynch K (2004) Mechanics and control of swimming: a review. IEEE J Oceanic Eng 29:660–673. doi: 10.1109/joe.2004.833208 CrossRefGoogle Scholar
  42. 42.
    Morgansen K, Triplett B, Klein D (2007) Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles. IEEE Trans Robot 23:1184–1199. doi: 10.1109/led.2007.911625 CrossRefGoogle Scholar
  43. 43.
    Valdivia y, Alvarado P, Youcef-Toumi K (2006) Design of machines with compliant bodies for biomimetic locomotion in liquid environments. J Dyn Syst Meas Contr 128:3. doi: 10.1115/1.2168476 CrossRefGoogle Scholar
  44. 44.
    Valdivia y Alvarado P (2007) Design of biomimetic compliant devices for locomotion in liquid environments. Ph.D., Massachusetts Institute of TechnologyGoogle Scholar
  45. 45.
    Cloitre A, Subramaniam V, Patrikalakis N, Valdivia y Alvarado P (2012) Design and control of a field deployable batoid robot. In: IEE BioRob. IEEE, pp 707–712Google Scholar
  46. 46.
    Valdivia y Alvarado P, Chin S, Larson W et al. (2010) A soft body under-actuated approach to multi degree of freedom biomimetic robots: a stingray example. In: IEEE BioRob. IEEE, pp 473–478Google Scholar
  47. 47.
    Valdivia y Alvarado P (2011) Hydrodynamic performance of a soft body under-actuated batoid robot. In: IEEE ROBIO. IEEE, pp 1712–1717Google Scholar
  48. 48.
    Wen L, Lauder G (2013) Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device. Bioinspir Biomim 8:046013. doi: 10.1088/1748-3182/8/4/046013 CrossRefGoogle Scholar
  49. 49.
    Bouffanais R, Weymouth G, Yue D (2010) Hydrodynamic object recognition using pressure sensing. Proc R Soc A Math Phys Eng Sci 467:19–38. doi: 10.1098/rspa.2010.0095 MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Liao J, Beal D, Lauder G, Triantafyllou M (2003) The Karman gait: novel body kinematics of rainbow trout swimming in a vortex street. J Exp Biol 206:1059–1073. doi: 10.1242/jeb.00209 CrossRefGoogle Scholar
  51. 51.
    Leonard J, Smith C (1997) Sensor data fusion in marine robotics. In: The seventh international offshore and polar engineering conferenceGoogle Scholar
  52. 52.
    Coombs S (2001) Smart skins: information processing by lateral line flow sensors. Auton Robots 11:255–261. doi: 10.1023/A:1012491007495 CrossRefzbMATHGoogle Scholar
  53. 53.
    Villanueva A, Marut K, Michael T, Priya S (2013) Biomimetic autonomous robot inspired by the Cyanea capillata (Cyro). Bioinspir Biomim 8:046005. doi: 10.1088/1748-3182/8/4/046005 CrossRefGoogle Scholar
  54. 54.
    Chen Z, Um T, Bart-Smith H (2011) A novel fabrication of ionic polymer–metal composite membrane actuator capable of 3-dimensional kinematic motions. Sens Actuators A 168:131–139. doi: 10.1016/j.sna.2011.02.034 CrossRefGoogle Scholar
  55. 55.
    Guo Shuxiang, Fukuda T, Asaka K (2003) A new type of fish-like underwater microrobot. IEEE/ASME Trans Mechatron 8:136–141. doi: 10.1109/tmech.2003.809134 CrossRefGoogle Scholar
  56. 56.
    Asadnia M, Kottapalli A, Haghighi R et al (2015) MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray. Bioinspir Biomim 10:036008. doi: 10.1088/1748-3190/10/3/036008 CrossRefGoogle Scholar
  57. 57.
    Kottapalli A, Asadnia M, Shen Z et al (2016) MEMS Artificial Neuromast Arrays for Hydrodynamic Control of Soft-Robots. IEEE NEMSGoogle Scholar
  58. 58.
    Asadnia M, Kottapalli A, Shen Z et al (2013) Flexible and surface-mountable piezoelectric sensor arrays for underwater sensing in marine vehicles. IEEE Sensors J 13:3918–3925. doi: 10.1109/jsen.2013.2259227 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Vignesh Subramaniam
    • 1
  • Pablo Valdivia y Alvarado
    • 2
  • Gabriel Weymouth
    • 3
  1. 1.Center for Environmental Sensing and ModelingSingapore-MIT Alliance for Research and TechnologySingaporeSingapore
  2. 2.Engineering Product DevelopmentSingapore University of Technology and DesignSingaporeSingapore
  3. 3.Southampton Marine and Maritime InstituteUniversity of SouthamptonSouthamptonUK

Personalised recommendations