Sensing on Robots Inspired by Nature
Chapter
First Online:
- 1 Citations
- 773 Downloads
Abstract
Biomimetics as a functional study of biological systems has inspired the creation of unconventional robots and sensors that outperform traditional ones. Nature provides cues into unique sensing and propulsion mechanisms that are far superior to traditional systems. This chapter describes a harbor seal-inspired whisker sensor, an octopus-inspired robot, a stingray-inspired robot and autonomous robots with biomimetic sensors developed at Singapore-MIT Alliance for Research and Technology Centre.
Keywords
Underwater Vehicle Harbor Seal Mantle Length Robotic Fish Underwater Robot
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.Beem H, Triantafyllou M (2015) Exquisitely sensitive seal whisker-like sensors detect wakes at large distances. arXiv. doi:arXiv:1501.04582v1
- 2.Kastelein R, van Gaalen M (1988) The sensitivity of the vibrissae of a Pacific walrus (Odobenus rosmarus divergens) Part 1. Aquat Mammals 14(3):123–133Google Scholar
- 3.Dehnhardt G (1990) Preliminary results from psychophysical studies on the tactile sensitivity in marine mammals. Sensory abilities of cetaceans, 1st edn. Springer, US, pp 435–446CrossRefGoogle Scholar
- 4.Dehnhardt G (1994) Tactile size discrimination by a California sea lion (Zalophus californianus) using its mystacial vibrissae. J Comp Physiol A. doi: 10.1007/bf00191851 Google Scholar
- 5.Dehnhardt G, Dücker G (1996) Tactual discrimination of size and shape by a California sea lion (Zalophus californianus). Anim Learn Behav 24:366–374. doi: 10.3758/bf03199008 CrossRefGoogle Scholar
- 6.Dehnhardt G, Kaminski A (1995) Sensitivity of the mystacial vibrissae of harbour seals (Phoca vitulina) for size differences of actively touched objects. J Exp Biol 198:2317–2323Google Scholar
- 7.Dehnhardt G, Mauck B, Hyvärinen H (1998) Ambient temperature does not affect the tactile sensitivity of mystacial vibrissae in harbour seals. J Exp Biol 201:3023–3029Google Scholar
- 8.Wieskotten S, Dehnhardt G, Mauck B et al (2010) Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal (Phoca vitulina). J Exp Biol 213:2194–2200. doi: 10.1242/jeb.041699 CrossRefGoogle Scholar
- 9.Wieskotten S, Mauck B, Miersch L et al (2011) Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). J Exp Biol 214:1922–1930. doi: 10.1242/jeb.053926 CrossRefGoogle Scholar
- 10.Hanke W, Witte M, Miersch L et al (2010) Harbor seal vibrissa morphology suppresses vortex-induced vibrations. J Exp Biol 213:2665–2672. doi: 10.1242/jeb.043216 CrossRefGoogle Scholar
- 11.Miersch L, Hanke W, Wieskotten S et al (2011) Flow sensing by pinniped whiskers. Philos Trans R Soc B Biol Sci 366:3077–3084. doi: 10.1098/rstb.2011.0155 CrossRefGoogle Scholar
- 12.Dehnhardt G, Mauck B, Bleckmann H (1998) Seal whiskers detect water movements. Nature 394:235–236. doi: 10.1038/28303 CrossRefGoogle Scholar
- 13.Weymouth G, Triantafyllou M (2011) Numerical study of seal whisker vibrations. In: 64th annual meeting of the APS division of fluid dynamics. APS, pp Volume 56, Number 18Google Scholar
- 14.Wieskotten S, Mauck B, Miersch L et al (2011) Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). J Exp Biol 214:1922–1930. doi: 10.1242/jeb.053926 CrossRefGoogle Scholar
- 15.Valdivia y Alvarado P, Subramaniam V, Triantafyllou M (2012) Design of a bio-inspired whisker sensor for underwater applications. In: IEEE sensors. IEEE, pp 1–4Google Scholar
- 16.Valdivia y Alvarado P, Subramaniam V, Triantafyllou M (2013) Performance analysis and characterization of bio-inspired whisker sensors for underwater applications. In: IEEE IROS. IEEE, pp 5956–5961Google Scholar
- 17.FDM 3D printer: http://www.stratasys.com
- 18.Unpublished measurements of Harbor Seal Whisker mechanical properties by Valdivia y Alvarado PGoogle Scholar
- 19.Mitchinson BN, Gurney K, Redgrave P et al (2004) Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex. Proc R Soc B Biol Sci 271:2509–2516. doi: 10.1098/rspb.2004.2882 CrossRefGoogle Scholar
- 20.Flexible displacement sensor. http://www.flexpoint.com
- 21.Silicone rubbers. http://www.smooth-on.com
- 22.Huffard C (2006) Locomotion by Abdopus aculeatus (Cephalopoda: Octopodidae): walking the line between primary and secondary defenses. J Exp Biol 209:3697–3707. doi: 10.1242/jeb.02435 CrossRefGoogle Scholar
- 23.Wells M (1990) Oxygen extraction and jet propulsion in cephalopods. Can J Zool 68:815–824. doi: 10.1139/z90-117 CrossRefGoogle Scholar
- 24.Packard A (1969) Jet propulsion and the giant fibre response of Loligo. Nature 221:875–877. doi: 10.1038/221875a0 CrossRefGoogle Scholar
- 25.Weymouth G, Triantafyllou M (2013) Ultra-fast escape of a deformable jet-propelled body. J Fluid Mech 721:367–385. doi: 10.1017/jfm.2013.65 MathSciNetCrossRefzbMATHGoogle Scholar
- 26.Hoerner S (1965) Fluid-dynamic drag: practical information on aerodynamic drag and hydrodynamic resistance. Db Hoerner Fluid Dynamics, Alburqueque, N.M.Google Scholar
- 27.Gosline J, DeMont M (1985) Jet-propelled swimming in squids. Sci Am 252:96–103. doi: 10.1038/scientificamerican0185-96 CrossRefGoogle Scholar
- 28.Weymouth G, Triantafyllou M (2012) Global vorticity shedding for a shrinking cylinder. J Fluid Mech 702:470–487. doi: 10.1017/jfm.2012.200 CrossRefzbMATHGoogle Scholar
- 29.Weymouth G, Subramaniam V, Triantafyllou M (2015) Ultra-fast escape maneuver of an octopus-inspired robot. Bioinspir Biomim 10:016016. doi: 10.1088/1748-3190/10/1/016016 CrossRefGoogle Scholar
- 30.Frith H, Blake R (1995) The mechanical power output and hydromechanical efficiency of northern pike (Esox lucius) fast-starts. J Exp Biol 198:1863–1873Google Scholar
- 31.Neumeister H, Ripley B, Preuss T, Gilly W (2000) Effects of temperature on escape jetting in the squid Loligo opalescens. J Exp Biol 203:547–557Google Scholar
- 32.Rosenberger L, Westneat M (1999) Functional morphology of undulatory pectoral fin locomotion in the stingray taeniura lymma (Chondrichthyes: dasyatidae). J Exp Biol 202:3523–3539Google Scholar
- 33.Rosenberger L (2001) Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J Exp Biol 204:379–394Google Scholar
- 34.Parson J, Fish F, Nicastro A (2011) Turning performance of batoids: limitations of a rigid body. J Exp Mar Biol Ecol 402:12–18. doi: 10.1016/j.jembe.2011.03.010 CrossRefGoogle Scholar
- 35.Triantafyllou M, Triantafyllou G (1995) An efficient swimming machine. Sci Am 272:64–70. doi: 10.1038/scientificamerican0395-64 CrossRefGoogle Scholar
- 36.Anderson J (2002) Maneuvering and stability performance of a robotic tuna. Integr Comp Biol 42:118–126. doi: 10.1093/icb/42.1.118 CrossRefGoogle Scholar
- 37.Bandyopadhyay P, Donnelly M, Nedderman W, Castano J (1997) A dual flapping foil maneuvering device for low-speed rigid bodies. In: Third international symposium on performance enhancement for marine vehiclesGoogle Scholar
- 38.Yu J, Tan M, Wang S, Chen E (2004) Development of a biomimetic robotic fish and its control algorithm. IEEE Trans Syst Man Cybern B 34:1798–1810. doi: 10.1109/tsmcb.2004.831151 CrossRefGoogle Scholar
- 39.Dogangil G, Ozcicek E, Kuzucu A (2005) Design, construction, and control of a robotic dolphin. In: IEEE ROBIO. IEEE, pp 51–56Google Scholar
- 40.Kato N (2000) Control performance in the horizontal plane of a fish robot with mechanical pectoral fins. IEEE J Oceanic Eng 25:121–129. doi: 10.1109/48.820744 CrossRefGoogle Scholar
- 41.Colgate J, Lynch K (2004) Mechanics and control of swimming: a review. IEEE J Oceanic Eng 29:660–673. doi: 10.1109/joe.2004.833208 CrossRefGoogle Scholar
- 42.Morgansen K, Triplett B, Klein D (2007) Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles. IEEE Trans Robot 23:1184–1199. doi: 10.1109/led.2007.911625 CrossRefGoogle Scholar
- 43.Valdivia y, Alvarado P, Youcef-Toumi K (2006) Design of machines with compliant bodies for biomimetic locomotion in liquid environments. J Dyn Syst Meas Contr 128:3. doi: 10.1115/1.2168476 CrossRefGoogle Scholar
- 44.Valdivia y Alvarado P (2007) Design of biomimetic compliant devices for locomotion in liquid environments. Ph.D., Massachusetts Institute of TechnologyGoogle Scholar
- 45.Cloitre A, Subramaniam V, Patrikalakis N, Valdivia y Alvarado P (2012) Design and control of a field deployable batoid robot. In: IEE BioRob. IEEE, pp 707–712Google Scholar
- 46.Valdivia y Alvarado P, Chin S, Larson W et al. (2010) A soft body under-actuated approach to multi degree of freedom biomimetic robots: a stingray example. In: IEEE BioRob. IEEE, pp 473–478Google Scholar
- 47.Valdivia y Alvarado P (2011) Hydrodynamic performance of a soft body under-actuated batoid robot. In: IEEE ROBIO. IEEE, pp 1712–1717Google Scholar
- 48.Wen L, Lauder G (2013) Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device. Bioinspir Biomim 8:046013. doi: 10.1088/1748-3182/8/4/046013 CrossRefGoogle Scholar
- 49.Bouffanais R, Weymouth G, Yue D (2010) Hydrodynamic object recognition using pressure sensing. Proc R Soc A Math Phys Eng Sci 467:19–38. doi: 10.1098/rspa.2010.0095 MathSciNetCrossRefzbMATHGoogle Scholar
- 50.Liao J, Beal D, Lauder G, Triantafyllou M (2003) The Karman gait: novel body kinematics of rainbow trout swimming in a vortex street. J Exp Biol 206:1059–1073. doi: 10.1242/jeb.00209 CrossRefGoogle Scholar
- 51.Leonard J, Smith C (1997) Sensor data fusion in marine robotics. In: The seventh international offshore and polar engineering conferenceGoogle Scholar
- 52.Coombs S (2001) Smart skins: information processing by lateral line flow sensors. Auton Robots 11:255–261. doi: 10.1023/A:1012491007495 CrossRefzbMATHGoogle Scholar
- 53.Villanueva A, Marut K, Michael T, Priya S (2013) Biomimetic autonomous robot inspired by the Cyanea capillata (Cyro). Bioinspir Biomim 8:046005. doi: 10.1088/1748-3182/8/4/046005 CrossRefGoogle Scholar
- 54.Chen Z, Um T, Bart-Smith H (2011) A novel fabrication of ionic polymer–metal composite membrane actuator capable of 3-dimensional kinematic motions. Sens Actuators A 168:131–139. doi: 10.1016/j.sna.2011.02.034 CrossRefGoogle Scholar
- 55.Guo Shuxiang, Fukuda T, Asaka K (2003) A new type of fish-like underwater microrobot. IEEE/ASME Trans Mechatron 8:136–141. doi: 10.1109/tmech.2003.809134 CrossRefGoogle Scholar
- 56.Asadnia M, Kottapalli A, Haghighi R et al (2015) MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray. Bioinspir Biomim 10:036008. doi: 10.1088/1748-3190/10/3/036008 CrossRefGoogle Scholar
- 57.Kottapalli A, Asadnia M, Shen Z et al (2016) MEMS Artificial Neuromast Arrays for Hydrodynamic Control of Soft-Robots. IEEE NEMSGoogle Scholar
- 58.Asadnia M, Kottapalli A, Shen Z et al (2013) Flexible and surface-mountable piezoelectric sensor arrays for underwater sensing in marine vehicles. IEEE Sensors J 13:3918–3925. doi: 10.1109/jsen.2013.2259227 CrossRefGoogle Scholar
Copyright information
© The Author(s) 2017