Advertisement

Multi-technology Products

  • Kirsten Bobzin
  • Andreas Bührig-Polaczek
  • Christian Hopmann
  • Peter Loosen
  • Reinhart Poprawe
  • Mehmet Öte
  • Uwe Reisgen
  • Tobias Brögelmann
  • Arnold Gillner
  • Thomas F. Linke
  • Uwe Vroomen
  • Christian Windeck
  • Michael Berens
  • Claudia A. Hartmann
  • Jan Klein
  • Nathan C. Kruppe
  • Xifang Liao
  • Patrick Messer
  • Mona Naderi
  • Philipp Ochotta
  • Magnus Orth
  • Florian Petzinka
  • Malte Röbig
  • Alexander Schiebahn
  • Johannes Schönberger
  • Michael Steger
Chapter

Abstract

Development of technical solutions that lead to widening the use of multi-technological products as well as in assessing ecological and economic potentials of multi-technological products have not yet been studied intensively. The activities conducted in the context of this research area focus on these aspects. The aforementioned aspects have been examined, evaluated and quantified on the basis of three example products resulting from the first funding period. The research activities conducted on the example components deliver the basis for the layout of different integrated multi-technology production systems. Technical solutions that enable coupling of different process steps with each other as well as the integration of different functionalities and different materials in final multi-technology products have been proposed. The complex interdependencies of the products themselves and their associated production processes have been researched and evaluated intensively. Finally, a profitability assessment of the proposed solutions was conducted and future research topics identified.

Keywords

Injection Molding Physical Vapor Deposition Thermal Softening Plastic Part Mold Insert 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Atzor M (1989) Aspekte des Magnetronsputterns zur Herstellung verschleiß- und korrosionsbeständiger Schichten auf Chrombasis. Dissertation RWTH Aachen, Series 5: Grund und Werkstoffe 156, VDI-Verlag, DüsseldorfGoogle Scholar
  2. Bagcivan N, Bobzin K, Theiß S (2013a) (Cr1−xAlx)N: a comparison of direct current, middle frequency pulsed and high power pulsed magnetron sputtering for injection molding components. Thin Solid Films 528:180–186CrossRefGoogle Scholar
  3. Bagcivan N, Bobzin K, Grundmeier G, Wiesing M, Ozcan O, Kunze C, Brugnara RH (2013b) Influence of HPPMS pulse length and inert gas mixture on the properties of (Cr, Al)N coatings. Thin Solid Films 549:192–198CrossRefGoogle Scholar
  4. Bagcivan N, Bobzin K, Theiß S (2013c) Synthesis of nano-structured HPPMS CrN/AlN coatings. J Phys D Appl Phys 46:084001CrossRefGoogle Scholar
  5. Bagcivan N, Bobzin K, Ludwig A, Grochla D, Brugnara RH (2014a) CrN/AlN nanolaminate coatings deposited via high power pulsed and middle frequency pulsed magnetron sputtering. Thin Solid Films 572:153–160CrossRefGoogle Scholar
  6. Bagcivan N, Bobzin K, Brögelmann T, Kalscheuer C (2014b) Development of (Cr, Al)ON coatings using middle frequency magnetron sputtering and investigations on tribological behavior against polymers. Surf Coat Technol 260:347–361CrossRefGoogle Scholar
  7. Bagnall DM, Boden SA (2008) Tunable reflection minima of nanostructured antireflective surfaces. Appl Phys Lett 93:133108. doi: 10.1063/1.2993231 CrossRefGoogle Scholar
  8. Bahbou F, Nylén P (2005) Relationship between surface topography parameters and adhesion strength for plasma spraying. In: Lugscheider E (ed) Proceedings of the international thermal spray conference, 2005. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, Düsseldorf, pp 1027–1031Google Scholar
  9. Bargel H, Schulze G (2012) Werkstoffkunde, 11th edn. Springer-Lehrbuch, Springer, BerlinCrossRefGoogle Scholar
  10. Bass M (2010) Handbook of optics: volume IV—optical properties of materials, nonlinear optics, quantum optics, 3rd edn. McGraw-Hill Professional, New York CityGoogle Scholar
  11. Bäuerle A, Bruneton A, Loosen P, Stollenwerk J, Wester R (2012) Algorithm for irradiance tailoring using multiple freeform optical surfaces. Opt Express 20:14477–14485CrossRefGoogle Scholar
  12. Berneck J (2011) Kunststoff statt metall. Kunststoffe 102(9):109–111Google Scholar
  13. Bobzin K (2013) Thermisches Spritzen. Oberflächentechnik für den Maschinenbau. Wiley-VCH, Weinheim, pp 293–321Google Scholar
  14. Bobzin K, Lugscheider E, Nickel R, Immich P (2006) (Cr1−x, Alx)N ein review über ein vielseitig einsetzbares schichtsystem. Materialwiss Werkstofftech 37:833–834CrossRefGoogle Scholar
  15. Bobzin K, Lugscheider E, Nickel R, Bagcivan N, Krämer A (2007a) Wear behavior of (Cr1−xAlx)N PVD-coatings in dry running conditions. Wear 263:1274–1280CrossRefGoogle Scholar
  16. Bobzin K, Nickel R, Bagcivan N, Manz FD (2007b) PVD-coatings in injection molding machines for processing optical polymers. Plasma Processes Polym 4:144–149CrossRefGoogle Scholar
  17. Bobzin K, Bagcivan N, Immich P, Bolz S, Cremer R, Leyendecker T (2008) Mechanical properties and oxidation behaviour of (Al, Cr)N and (Al, Cr, Si)N coatings for cutting tools deposited by HPPMS. Thin Solid Films 517:1251–1256CrossRefGoogle Scholar
  18. Bobzin K, Kopp N, Warda T, Oete M (2012) Numerische Berechnungen zur Bestimmung der effektiven Eigenschaften kaltgasgespritzter Schichten. In: Proceedings of the 15th materials technology colloquium, Chemnitz, 2012, pp 62–67Google Scholar
  19. Bobzin K, Hopmann C, Kopp N, Linke TF, Schulz C, Wunderle J (2013) Investigation of transferring coatings using the in-mold metal spraying process. In: Proceedings of the 10th international conference the “A” coatings, Aachen, pp 205–214Google Scholar
  20. Bobzin K, Bagcivan N, Brögelmann T, Brugnara RH (2014a) HPPMS-Beschichtungen metallischer Komponenten für die Kunststoff-verarbeitung. In: Proceedings of 27th IKV colloquium, pp 6–17Google Scholar
  21. Bobzin K, Bagcivan N, Brögelmann T, Brugnara RH (2014b) HPPMS- Beschichtungen metallischer Komponenten für die Kunststoff-verarbeitung. GAK Fachmagazin für die Polymerindustrie 10:616–621Google Scholar
  22. Bobzin K, Öte M, Linke TF, Schulz C, Hopmann C, Wunderle J (2014c) Integration of electrical functionality by transplantation of cold sprayed electrical conductive Cu tracks via injection moulding. In: Proceedings of international thermal spray conference, Barcelona, pp 215–220Google Scholar
  23. Bobzin K, Öte M, Linke TF, Sommer J, Liao X (2015) Influence of process parameter on grit blasting as a pretreatment process for thermal spraying. J Therm Spray Technol 1–9Google Scholar
  24. Bouvard JL, Francis DK, Tschopp MA, Marin EB, Bammann DJ, Horstemeyer MF (2013) An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation. Int J PlastGoogle Scholar
  25. Brecher C (2011) Integrative Produktionstechnik für Hochlohnländer. VDI, Springer, HeidelbergCrossRefGoogle Scholar
  26. Brecher C (ed) (2012) Integrative production technology for high-wage countries. Springer-Verlag Berlin. doi: 10.1007/978-3-642-21067-9_5
  27. Breuninger J, Becker R, Wolf A, Rommel S, Verl A (2013) Generative Fertigung mit Kunststoffen: Konzeption und Konstruktion für Selektives LasersinternGoogle Scholar
  28. Brockmann W, Kollek H, Hennemann OD (1984) Failure mechanisms in the boundary layer zone of metal/polymer systems. In: Mittal KL (ed) Adhesive joints. Plenum Public Press, New York, pp 484–496Google Scholar
  29. Brosig E (1996) Chemisch-Kupfer sorgt für eine schützende Haut. EMV-Schutz: Kunststoffgehäuse selektiv metallisieren. Industrieanzeiger 43:44–46Google Scholar
  30. Bürgel R, Maier H, Niendorf T (2011) Handbuch Hochtemperatur-werkstofftechnik, Grundlagen, Werkstoffbeanspruchungen, Hoch-temperaturlegierungen und -beschichtungen, Bd. 4Google Scholar
  31. Bürkle E, Burr A (2007) In drei Sekunden von 100 auf 140 Grad. Kunststoffe 97(10):210–496Google Scholar
  32. Cao Y, Karlsson B, Ahlström J (2015) Temperature and strain rate effects on the mechanical behavior of dual phase steel. Mater Sci Eng A 636:124–132CrossRefGoogle Scholar
  33. Chanda M, Roy K (2007) Plastics technology handbook. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  34. Chaves J (2008) Introduction to nonimaging optics. CRC Press, Boca Raton. ISBN: 9781420054293Google Scholar
  35. Chevalier L, Luo Y-M, Monteiro E, Plantamura B (2010) Strain field measurement on 3D surfaces: application to petaloid base of PET bottles under pressure. Int Polym Proc 25(2):93–108CrossRefGoogle Scholar
  36. Chiffoleau GJA, Steinberg TA, Veidt M (2003) Reflection of structural waves at a solid/liquid interface. Ultrasonic 41:347–356CrossRefGoogle Scholar
  37. Crawmer D (2013) Coating structures, properties, and materials. In: Tucker RC (ed) ASM handbook, vol 5A., Thermal spray technologyASM International, Materials Park, Ohio, pp 24–60Google Scholar
  38. Davis JR (2001) Copper and copper alloys. ASM international, OhioGoogle Scholar
  39. Dayss E, Leps G, Meinhardt J (1999) Surface modification for improved adhesion of a polymer-metal compound. Surf Coat Technol 9(116–119):986–990CrossRefGoogle Scholar
  40. Delin M, Rychwalski RW, Kubát J, Klason C, Hutchinson JM (1996) Physical aging time scales and rates for poly(vinyl acetate) stimulated mechanically in the Tg—region. Polym Eng Sci 36(24):2955–2967CrossRefGoogle Scholar
  41. Ding XZ, Zeng XT (2005) Structural, mechanical and tribological properties of CrAlN coatings deposited by reactive unbalanced magnetron sputtering. Surf Coat Technol 200:1372–1376CrossRefGoogle Scholar
  42. Drummer D, Dörfler R (2007) Mechatronik mit Kunststoffen—Herausforderungen auf dem Weg vom Werkstoff zur Baugruppe. Paper presented at the Spritzgießen 2007, DüsseldorfGoogle Scholar
  43. Drummer D, Gruber K, Meister S (2011) Wechseltemperierung steuert Bauteileigenschaften. Kunststoffe 101(4):46–49Google Scholar
  44. Endemann U, Glaser S, Völker M (2002) Kunststoff und Metall im festen Verbund. Verbindungstechnik für Kunststoff-Metall-Hybridstrukturen. Kunststoffe, München 92(11):110–113Google Scholar
  45. Fang Q-Z, Wang TJ, Beom HG, Zhao HP (2009) Rate-dependent large deformation behavior of PC/ABS. Polymer 50:296–304CrossRefGoogle Scholar
  46. Flepp A (2012) Wirschaftlicher als Metall. Kunststoffe 102(8):73–75Google Scholar
  47. Fraunhofer ILT (2015) Produktivitätssteigerung bei UKP-Lasersystemen, Pressemitteilung. Retrieved from http://www.ilt.fraunhofer.de/de/publikationen-und-presse/pressemitteilungen/pm2015/pressemitteilung-16-06-2015.html
  48. Friedrich J, Pohl M, Gähde J (1981) Untersuchungen zur Plasmaätzung von Polymeren. V. Plasmaätzung von Styrenpolymeren. Acta Polym 32(1):48–55Google Scholar
  49. Ganske M (2011) Dynamische Formnesttemperierung—Ein neues Prozessfenster für die Herstellung hochwertiger Kunststoffformteile. In: Proceedings of “Optische Komponenten aus Kunststoffen—Die gesamte Prozesskette im Blick”, AachenGoogle Scholar
  50. Garbassi F, Morra M, Occhhiello E (1998) Polymer surfaces—from physics to technology. Wiley-VCH, ChichesterGoogle Scholar
  51. Geiger M, Ehrenstein GW (eds) (2003) Werkstoff- und prozessoptimierte Herstellung flächiger Kunststoff-Kunststoff und Kunststoff-Metall-Verbundbauteile: Tagungsband zum Berichts- und Industriekolloquium 2003 des SFB 396Google Scholar
  52. Gießauf J, Pillwein G, Steinbichler G (2008) Die variotherme Temperierung wird produktionstauglich. Kunststoffe 98(8):87–92Google Scholar
  53. Goldbach H, Koch B (1993) Light weight constructional element. Germany Patent EP 0370342 B1, 11 Aug 1993Google Scholar
  54. Grob W, Müller K, Habiger E (2003) EMC Kompendium 2003. Publish-Industry, MünchenGoogle Scholar
  55. Großmann J (2009) Einfluss von Plasmabehandlungen auf die Haftfestigkeit vakuumtechnisch hergestellter Polymer-Metall-Verbunde. Universität Erlangen-Nürnberg, Dissertation, ErlangenGoogle Scholar
  56. Grote K, Feldhusen J (2014) Dubbel: Taschenbuch für den Maschinenbau. 24. aktualisierte Auflage. SpringerLink: Bücher. Springer, BerlinGoogle Scholar
  57. Habenicht G (2009) Kleben—Grundlagen, Technologie, Anwendungen. Springer-Verlag, BerlinGoogle Scholar
  58. Hanzawa F (2009) Lens films and reflective polarization films. In: Kobayashi S, Mikoshiba S, Lim S (eds) LCD backlights. Wiley, Chichester. doi: 10.1002/9780470744826.ch21
  59. Hartmann C, Gillner A (2014) Plasma expansion during laser structuring of metals. In: Proceedings of the 1st smart laser processing conference, Yokohama, Japan, 22–24 AprilGoogle Scholar
  60. Hopmann C (2016) Integrative Kunststofftechnik 2016–28. Internationales Kolloquium Kunststofftechnik. Shaker Verlag, AachenGoogle Scholar
  61. Hopmann C, Klein J (2015) Determination of strain rate dependent material data for CEA crash simulation of polymers using digital image correlation. Comput Mater Sci 100:181–190CrossRefGoogle Scholar
  62. Hopmann C, Kremer Ch, Petzinka F, Köpf M, Eilbracht S, Steger M (2012) Development of a FEA simulation model for variothermal extrusion embossing. In: Proceedings of the polymer processing society 28th annual meeting, Pattaya, ThailandGoogle Scholar
  63. Hopmann C, Schöngart M, Klein J, Weber M (2015) Crash simulation of hybrid structures considering the stress and strain rate dependent material behavior of thermoplastic materials. In: AIP conference proceedings 1664Google Scholar
  64. Kammer C (1995) Aluminium-Taschenbuch. Band 1: Grundlagen und Werkstoffe (15. Aufl.). Aluminium-Verlag, DüsseldorfGoogle Scholar
  65. Kanani N (2009) Galvanotechnik: Grundlagen: Verfahren und Praxis einer Schlüsseltechnologie. Carl Hanser Verlag, München, WienGoogle Scholar
  66. Kayani A, Smith RJ, Teintze S, Kopczyk M, Gannon PE, Deibert MC, Gorokhovsky VI, Shutthanandan V (2006) Oxidation studies of CrAlON nanolayered coatings on steel plates. Surf Coat Technol 201:1685–1694CrossRefGoogle Scholar
  67. Kelly PJ, Bradley JW (2009) Pulsed magnetron sputtering-process overview and applications. Surface Engineering Group, Dalton Research Institute, Manchester Metropolitan University, Manchester M15GD, UK and Dept. of Electrical Engineering, University of Liverpool, Liverpool, UKGoogle Scholar
  68. Khatibi A, Sjölen J, Greczynski G, Jensen J, Eklund P, Hultman L (2012) Structural and mechanical properties of Cr–Al–O–N thin films grown by cathodic arc deposition. Acta Mater 60:6494–6507CrossRefGoogle Scholar
  69. Kimura A, Kawate M, Hasegawa H, Suzuki T (2003) Anisotropic lattice expansion and shrinkage of hexagonal TiAlN and CrAlN films. Surf Coat Technol 169–170:367–370CrossRefGoogle Scholar
  70. Klaiber F (2010) Entwicklung einer Anlagen- und Prozesstechnik für die Herstellung superhydrophober Oberflächen im Spritzgießverfahren. Rheinisch-Westfälische Technische Hochschule Aachen, DissertationGoogle Scholar
  71. Klein J, Hopmann C (2016) On the origin and handling of the force oscillation phenomenon in tensile impact testing of polymer materials. doi: 10.1007/s11340-015-0124-z
  72. Kolling S, Haufe A, Feucht M, Bois PAD (2005) SAMP-1: a semi-analytical model for the simulation of polymers. 4. LS-DYNA AnwenderforumGoogle Scholar
  73. Krager-Kocsis J, Benevolenski OI (2001) Toward understanding the stress oscillation phenomenon in polymers due to tensile impact loading. J Mater Sci 36:3365–3371CrossRefGoogle Scholar
  74. Kuhn S, Burr A, Kübler M, Deckert M, Bleesen C (2011) The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system. J Micromech Microeng 21(025024):1–18Google Scholar
  75. Lava P, Coppieters S, Wang Y, Pv Houtte, Debruyne D (2011) Assessment of measuring errors in strain fields obtained via DIC on planar sheet metal specimens with a non-perpendicular camera alignment. Appl Mech Mater 70:165–170CrossRefGoogle Scholar
  76. Li Z, Lambros J (2001) Strain rate effects on the thermomechanical behavior of polymers. Int J Solids Struct 38:3549–3562CrossRefzbMATHGoogle Scholar
  77. Lin FC, Liao LY, Liao CY, Huang YP, Shieh HPD (2008) Dynamic backlight gamma on high dynamic range LCD TVs. J Disp Technol 4(2):139–146CrossRefGoogle Scholar
  78. Lin HY, Chang CH, YOUNG WB (2011) Experimental study on the filling of nano structures with infrared mold surface heating. Int Polym Proc 26(1):73–81CrossRefGoogle Scholar
  79. Liu A, Guo M, Zhao M, Hu M (2006) Arc sprayed erosion-resistant coating for carbon fiber reinforced polymer matrix composite substrates. Surf Coat Technol 200(9):3073–3077CrossRefGoogle Scholar
  80. Lugscheider E, Bobzin K, Lackner K (2003) Investigations of mechanical and tribological properties of CrAlN+C thin coatings deposited on cutting tools. Surf Coat Technol 174–175:681–686CrossRefGoogle Scholar
  81. Maes M (2007) Gepulste Abscheidung von (Cr,Al)N PVD-Niedertemperaturschichtsystemen für Hochleistungsbauteile. Dissertation RWTH Aachen, Shaker-Verlag, Aachen. ISBN: 978-3-8322-6570-0Google Scholar
  82. Martin PM (2011) Introduction to surface engineering and functionally engineered materials. ISBN: 978-0-470-63927-6Google Scholar
  83. Moritzer E, Budde C, Hüttner M (2015) Wie Kurz- und Endlosfasern sich am besten vertragen. Materialeigenschaften beeinflussen die Verbundfestigkeit zwischen Organoblech und angespritztem Thermoplast. Kunststoffe, München 105(3):85–88Google Scholar
  84. Ng SH, Wang ZF (2009) Hot roller embossing for microfluidics: process and challenges. Springer Science+Business, Singapore Institute of Manufacturing Technology, SingaporeGoogle Scholar
  85. Nikolova D (2005) Charakterisierung und Modifizierung der Grenzflächen im Polymer-Metall-Verbund. Universität Halle-Wittenberg, HalleGoogle Scholar
  86. Op de Laak M, Pötsch G, Schwitzer K (2001) Kunststoff-Metall-Hybride. Möglichkeiten zur Herstellung von Strukturbauteilen. Kunststoffe, München 91(9):112–118Google Scholar
  87. Peng L, Deng Y, Yi P, Lai X (2013) Micro hot embossing of thermoplastic polymers: a review. J Micromech Microeng 24(1)Google Scholar
  88. Pfeiffer B (2005) Elektrisch leitfähige Kunststoffe. OTTI Technik-Kolleg, RegensburgGoogle Scholar
  89. Pflug G (2008) Kunststoffgehäuse abschirmen. Kunststoffe 98(2):22–27Google Scholar
  90. Ranc N, Chrysochoos A (2013) Calorimetric consequences of thermal softening in Johnson–Cook’s model. Mech Mater 65:44–55CrossRefGoogle Scholar
  91. Richeton J, Ahzi S, Vechio KS, Jiang FC, Adharapurapu RR (2006) Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: characterization and modeling of the compressive yield stress. Int J Solids Struct 43(7–8):2318–2335CrossRefGoogle Scholar
  92. Robitaille F, Yandouze M, Hind S, Jodoin B (2009) Metallic coating of aerospace carbon/epoxy composites by the pulsed gas dynamic spraying process. Surf Coat Technol 203(19):2954–2960CrossRefGoogle Scholar
  93. Rodríguez-Martínez JA, Vadillo G, Zaera R, Fernández-Sáez J, Rittel D (2015) An analysis of microstructural and thermal softening effects in dynamic necking. Mech Mater 80:298–310CrossRefGoogle Scholar
  94. Sanpo N, Wang J, Berndt CC (2013) Feedstock material considerations for thermal spray. In: Tucker RC (ed) ASM handbook, vol 5A., Thermal spray technologyASM International, Materials Park, Ohio, pp 93–120Google Scholar
  95. Scheik S, Schleser M, Reisgen U (2014) Thermisches Direktfügen von Metall und Kunststoff—Eine Alternative zur Klebtechnik? In: Siebenpfeiffer W (ed) Leichtbau-technologien im Automobilbau. Springer Fachmedien Wiesbaden, pp 89–94Google Scholar
  96. Schenke G (2014) New hybrid molding process for good adhesion and increased functions of metal/plastic composite parts. Paper presented at the TMS 2014 annual meeting & exhibition, San Diego, USA, 15 Feb 2014–22 Feb 2014Google Scholar
  97. Schöngart M (2014) Dynamische Beheizung von Spritzgießwerkzeugen mittels Laserstrahlung. Dissertation RWTH-AachenGoogle Scholar
  98. Schrey A (1993) Dünne Hartstoffschichten zum Korrosionsschutz, Dissertation RWTH Aachen, Mainz-Verlag. ISBN: 3-93008Google Scholar
  99. Şerban DA, Weber G, Marşavina L, Silberschmidt VV, Hufenbach W (2013) Tensile properties of semi-crystalline thermoplastic polymers: effects of temperature and strain rates. Polym Testing 32:413–425CrossRefGoogle Scholar
  100. Singh D, Tomar SK (2008) Longitudinal waves at a micropolar fluid/solid interface. Int J Solids Struct 45:225–244CrossRefzbMATHGoogle Scholar
  101. Sonne MR, Tutum CC, Hattel JH, Simar A, de Meester D (2013a) The effect of hardening laws and thermal softening on modeling residual stresses. J Mater Process Technol 213:447–486CrossRefGoogle Scholar
  102. Sonne MR, Tutum CC, Hattel JH, Simar A, de Meester D (2013b) The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3. J Mater Process Technol 213:447–486CrossRefGoogle Scholar
  103. Steger M, Hartmann C, Beckemper A, Holtkamp J, Gillner S (2013) Fabrication of hierarchical structures by direct laser writing and multi-beam-interference. J Laser Micro/Nanoeng 8:3CrossRefGoogle Scholar
  104. Stoltenhoff T, Borchers C, Gärtner F, Kreye H (2006) Microstructures and key properties of cold-sprayed and termally sprayed copper coatings. Surf Coat Technol 200(16–17):4947–4960. doi: 10.1016/j.surfcoat.2005.05.011 CrossRefGoogle Scholar
  105. Strategies Unlimited (2015) Ultrafast lasers: market analysis and forecastGoogle Scholar
  106. Theiß S (2013) Analyse gepulster Hochleistungsplasmen zur Entwicklung neuartiger PVD-Beschichtungen für die Kunststoffverarbeitung. Dissertation RWTH Aachen, Shaker-Verlag, Aachen. ISBN: 978-3-8440-2112-7Google Scholar
  107. Vetter J, Lugscheider E, Guerreiro S (1998) CrAlN coatings deposited by the cathodic vacuum arc deposition. Surf Coat Technol 98(1, 3):1233–1239Google Scholar
  108. Weber R (2009) Webers Taschenlexikon Aluminium. Total Aluminium Industry Association (GDA) e.V.‚ Düsseldorf. ISBN: 10 3-937171-20-7, ISBN: 13 978-3-937171-20-3Google Scholar
  109. Werner J, Hufenbach W, Kiele J, Herbig A, Klotz A, Bahlsen M (2012) Elektrofahrzeug ultraleicht gebaut. Kunststoffe, München 102(9):97–101Google Scholar
  110. Wyrowski F, Kuhn M (2011) Introduction to field tracing. J Mod Opt 58(5–6):449–466. doi: 10.1080/09500340.2010.532237 CrossRefzbMATHGoogle Scholar
  111. Xiao X (2007) Dynamic tensile testing of plastic materials. Polym Testing 27:164–178CrossRefGoogle Scholar
  112. Zhao J, Lu L, Rabczuk T (2015) The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers. Comput Mater Sci 567–572Google Scholar
  113. Zimmermann T, Preißner L (2009) Variotherme Prozessgestaltung mittels Induktionstemperierung zur spritzgusstechnischen Verarbeitung hochgefüllter Thermoplaste in Brennstoffzellenanwendungen. Institut für Konstruktion und Fertigung in der Feinwerkstechnik und Zentrum für Brennstoffzellen Technik Gmbh, Universität Stuttgart, IGF-Vorhaben Nr. 15955 NGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kirsten Bobzin
    • 1
  • Andreas Bührig-Polaczek
    • 2
  • Christian Hopmann
    • 3
  • Peter Loosen
    • 4
  • Reinhart Poprawe
    • 6
  • Mehmet Öte
  • Uwe Reisgen
    • 5
  • Tobias Brögelmann
    • 1
  • Arnold Gillner
    • 6
  • Thomas F. Linke
    • 1
  • Uwe Vroomen
    • 2
  • Christian Windeck
    • 3
  • Michael Berens
    • 4
  • Claudia A. Hartmann
    • 6
  • Jan Klein
    • 3
  • Nathan C. Kruppe
    • 1
  • Xifang Liao
    • 1
  • Patrick Messer
    • 2
  • Mona Naderi
    • 1
  • Philipp Ochotta
    • 3
  • Magnus Orth
    • 3
  • Florian Petzinka
    • 3
  • Malte Röbig
    • 3
  • Alexander Schiebahn
    • 5
  • Johannes Schönberger
    • 5
  • Michael Steger
    • 6
  1. 1.Surface Engineering Institute (IOT)RWTH Aachen UniversityAachenGermany
  2. 2.Foundry Institute (GI)RWTH Aachen UniversityAachenGermany
  3. 3.Institute of Plastics Processing (IKV)RWTH Aachen UniversityAachenGermany
  4. 4.Chair for Technology of Optical Systems (TOS)RWTH Aachen UniversityAachenGermany
  5. 5.Welding and Joining Institute (ISF)RWTH Aachen UniversityAachenGermany
  6. 6.Chair for Laser Technology (LLT)RWTH Aachen UniversityAachenGermany

Personalised recommendations