Advertisement

Multi-technology Platforms (MTPs)

  • Christian Brecher
  • Wolfgang Bleck
  • Jörg Feldhusen
  • Gerhard Hirt
  • Fritz Klocke
  • Uwe Reisgen
  • Robert Schmitt
  • David Bailly
  • Markus Bambach
  • Laura Conrads
  • Frédéric du Bois-Reymond
  • Alexander Göttmann
  • Stefan Gräfe
  • Mohamed Harraz
  • Jan Erik Heller
  • Werner Herfs
  • Krishna Chaitanya Komerla
  • Marvin Laugwitz
  • Manuel Löwer
  • Chris Mertin
  • Andreas Naumov
  • Johannes Nittinger
  • Martin Peterek
  • Ulrich Prahl
  • Jan Rey
  • Alexander Schiebahn
  • Alexander Schmid
  • Roman Schmitz
  • Stefan Tönissen
  • Holger Voswinckel
  • Maximilian Wegener
  • Frederik Wellmann
Chapter

Abstract

The growing demand for individualized commodities requires new solutions for a highly flexible yet cost-efficient production. Hence, the research results described in this chapter address the question of how different manufacturing technologies could be combined and employed efficiently in industrial practice. Reaching across the whole field of Multi-Technology Platforms (MTPs) a generalized design methodology was examined. The resulting template-based procedure, combining function structure and technology chains, is introduced in the first section. Consecutively, the next section advances this approach by illustrating the incorporation of metrology into machine tools and MTPs. For technological validation, all newly-developed scientific approaches were successfully integrated into four demonstrator test beds located at the RWTH Aachen University: a Multi-Technology Machining Center, a Hybrid Sheet Metal Processing Center, a Conductive Friction Stir Welding Center and a laser-enhanced hybrid lathe. The economic efficiency of manufacturing technology integration is reviewed before a profitability assessment based on the aforementioned demonstrator test beds is performed. The chapter concludes with an outlook on future research topics.

Keywords

Machine Tool Friction Stir Weld Friction Stir Welding Weld Seam Hard Turning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abele E, Liebeck T, Wörn A (2006) Measuring flexibility in investment decisions for manufacturing systems. CIRP Ann Manuf Technol 55(1):433–436. doi: 10.1016/S0007-8506(07)60452-1 CrossRefGoogle Scholar
  2. Alves LMM, Martins PAF (2012) Joining sheets to tubular profiles by tube forming. In: Davim JP (ed) Computational methods for optimizing manufacturing technology. IGI Global, pp 319–338Google Scholar
  3. Alves LMM, Dias EJ, Martins PAF (2011) Joining sheet panels to thin-walled tubular profiles by tube end forming. J Clean Prod 19(6–7):712–719. doi: 10.1016/j.jclepro.2010.12.014 CrossRefGoogle Scholar
  4. Ambrogio G, Filice L, Gagliardi F (2011) Enhancing incremental sheet forming performance using high speed. KEM 473:847–852. doi: 10.4028/www.scientific.net/KEM.473.847
  5. Ambrogio G, Gagliardi F, Bruschi S, Filice L (2013) On the high-speed single point incremental forming of titanium alloys. CIRP Ann Manuf Technol 62(1):243–246. doi: 10.1016/j.cirp.2013.03.053 CrossRefGoogle Scholar
  6. Ambrogio G, Ingarao G, Gagliardia F, Di Lorenzo R (2014) Analysis of energy efficiency of different setups able to perform single point incremental forming (SPIF) processes. Proc CIRP 15:111–116CrossRefGoogle Scholar
  7. Amino H, Matsubara S, Lu Y (2004) Shaping method and apparatus of thin metal sheet. US patent 20040148997 A1. 05 Aug 2004Google Scholar
  8. Amino M, Mizoguchi M, Terauchi Y, Maki Trent (2014) Current status of “dieless” Amino’s incremental forming. Proc Eng 81:54–62CrossRefGoogle Scholar
  9. Arntz K, Brecher C, Bundschuh W, Deutges D, Eckert M, Emonts M et al (2011) Hybride Produktionstechnik. In: Brecher C, Klocke F, Schmitt R, Schuh G (eds) Wettbewerbsfaktor Produktionstechnik: Aachener Perspektiven. Aachener Werkzeugmaschinenkolloquium 2011. Shaker, Herzogenrath, pp 317–344Google Scholar
  10. Askari A, Silling S, London B, Mahoney M (2001) Modeling and analysis of friction stir welding processes. Friction Stir Weld Process 43–54Google Scholar
  11. Aste C, Weissteiner T (2013) Café 3440 am Pitztaler Gletscher – Wildspitzbahn, Österreich. Stahlbau 82(5):387–391. doi: 10.1002/stab.201310055 CrossRefGoogle Scholar
  12. Awang M (2007) Simulation of friction stir spot welding (FSSW) process: study of friction Phenomena. Dissertation, Department of Mechanical and Aerospace Engineering Morgantown, West VirginiaGoogle Scholar
  13. Bachmann F et al (1999) Hybride Prozesse - Neue Wege zu anspruchsvollen Produkten. In: Eversheim W et al (eds) Aachener Werkzeugmaschinen Kolloquium - Wettbewerbsfaktor Produktionstechnik. Shaker, Aachen, pp 234–278Google Scholar
  14. Bachmann F, Loosen P, Poprawe R (2007) High power diode lasers—technology and applications. Springer, New York, pp 432–433Google Scholar
  15. Bailly D, Bambach M, Hirt G, Pofahl T, Della Puppa G, Trautz M (2015a) Investigation on the producibility of freeform Façade elements made of sheet metal as self-supporting structures by means of incremental sheet forming. 2nd European Steel Technology and Application Days and METEC Trade Fair, Steel Institute VDEh, Düsseldorf. 15 June 2015Google Scholar
  16. Bailly D, Bambach M, Hirt G, Pofahl T, Della Puppa G, Trautz M (2015b) Flexible manufacturing of double-curved sheet metal panels for the realization of self-supporting freeform structures. KEM 639:41–48. doi: 10.4028/www.scientific.net/KEM.639.41 CrossRefGoogle Scholar
  17. Bailly D, Conrads L, Hirt G (2015c) Hybrid sheet metal processing center. In: Tekkaya AE, Homberg W, Brosius A (eds) 60 excellent inventions in metal forming. Springer, Berlin Heidelberg, pp 143–148Google Scholar
  18. Balsamo A, Chimienti A, Desogus S, Grattoni P, Meda A, Nerino R et al (2005) A portable stereovision system for cultural heritage monitoring. CIRP Ann Manuf Technol 54(1):499–502. doi: 10.1016/S0007-8506(07)60154-1 CrossRefGoogle Scholar
  19. Bambach M, Voswinckel H, Hirt G (2014) A new process design for performing hole-flanging operations by incremental sheet forming. Proc Eng 81:2305–2310. doi: 10.1016/j.proeng.2014.10.325 CrossRefGoogle Scholar
  20. Bi G (2004) Identifizierung und Qualifizierung von prozessrelevanten Kenngrössen zur Überwachung und Regelung beim Laserstrahlauftragschweissen. Dissertation, RWTH Aachen UniversityGoogle Scholar
  21. Bi G, Gasser A (2011) Restoration of nickel-base turbine blade knife-edges with controlled laser aided additive manufacturing. Phys Proc 12Google Scholar
  22. Bi G, Gasser A, Wissenbach K, Drenker A, Poprawe R (2006) Identification and qualification of temperature signal for monitoring and control in laser cladding. Opt Lasers Eng 44(12):1348–1359CrossRefGoogle Scholar
  23. Birkhofer H (1980) Analyse und Synthese der Funktionen technischer Produkte. Dissertation, Techn. Universität BraunschweigGoogle Scholar
  24. Blau PJ (1996) Friction science and technology. In: Dekker M (ed) Mechanical engineering 100, New YorkGoogle Scholar
  25. Brecher C (2011) Integrative Produktionstechnik für Hochlohnländer. Springer, BerlinCrossRefGoogle Scholar
  26. Brecher C (2012) Integrative production technology for high-wage countries. Springer, BerlinCrossRefGoogle Scholar
  27. Brecher C, Karlberger A (2010) Steuerungskonzept für ein hybrides Bearbeitungszentrum. In: Hybride Technologien in der Produktion, pp 78–93Google Scholar
  28. Brecher C, Hoffmann C, Karlberger A, Rosen C (2008) Multi-technology platform for hybrid metal processing. In: Mitsuishi M, Ueda K, Kimura F (eds) Manufacturing systems and technologies for the new frontier. The 41st CIRP conference on manufacturing systems, 26–28 May 2008, Tokyo, Japan. Springer, London, pp 425–428Google Scholar
  29. Brecher C, Esser M, Witt S (2009a) Interaction of manufacturing process and machine tool. CIRP Ann Manuf Technol 58(2):588–607CrossRefGoogle Scholar
  30. Brecher C, Klocke F, Do-Khac D, Breitbach T, Spiegel M (2009b) Hybrides Bearbeitungszentrum für die Werkzeugfertigung: Prozessketten verkürzen. Spec Tooling 4:36–37Google Scholar
  31. Brecher C, Breitbach T, Do-Khac D (2012) Strategies and boundaries for cost efficient multi-technology machine tools. In: Proceedings of the 15th international conference on machine design and production. Turkey, pp 251–266Google Scholar
  32. Brecher C, Breitbach T, Do-Khac D, Bäumler S, Lohse W (2013a) Efficient utilization of production resources in the use phase of multi-technology machine tools. Prod Eng Res Devel 7(4):443–452. doi: 10.1007/s11740-013-0455-5 CrossRefGoogle Scholar
  33. Brecher C, Breitbach T, Do-Khac D, Bäumler S, Lohse W (2013b) Qualifying multi-technology machine tools for machining precision. In: 7th international conference and exhibition on design and production of machines and dies/molds, Antalya, Turkey, pp 159–168Google Scholar
  34. Brecher C, Breitbach T, du Bois-Reymond F (2013c) Qualifying laser-integrated machine tools with multiple workspaces for machining precision. In: Proceedings in manufacturing systems, Bukarest, RomaniaGoogle Scholar
  35. Breitbach T (2015) Auslegung und Bewertung laserintegrierter Bearbeitungszentren. Dissertation, RWTH Aachen UniversityGoogle Scholar
  36. Byrne G, Dornfeld D, Denkena B (2003) Advancing cutting technology. CIRP Ann Manuf Technol 52(2):483–507. doi: 10.1016/S0007-8506(07)60200-5 CrossRefGoogle Scholar
  37. Chao Y, Qi X, Tang W (2003) Heat transfer in friction stir welding-experimental and numerical studies. Trans ASME 125:138–145Google Scholar
  38. Chapman MAV (2003) Limitations of laser diagonal measurements. Precision Eng 27(4):401–406. doi: 10.1016/S0141-6359(03)00041-2 CrossRefGoogle Scholar
  39. Chiron (2015) Mehrspindel-Bearbeitung. Der Multiplikator-Effekt: Mehr Spindeln, mehr Schneiden, mehr Profit. http://www.chiron.de/fileadmin/pdf/Bearbeitungstechnologien/Deutsch_3Korr.pdf. Accessed 18 Dec 2015
  40. Choi D, Lee C, Ahn B, Choi J, Yeon Y, Song K, Hong S, Lee W, Kang K, Jung S (2011) Hybrid friction stir welding of high-carbon steel. J Mater Sci Technol 27(2):127–130CrossRefGoogle Scholar
  41. Choudhury SK, Mangrulkar KS (2000) Investigation of orthogonal turn-milling for the machining of rotationally symmetrical work pieces. J Mater Process Technol 99(1–3):120–128. doi: 10.1016/S0924-0136(99)00397-0 CrossRefGoogle Scholar
  42. Coelho RS, Kostka A, dos Santos JF, Kaysser-Pyzalla A (2012) Friction-stir dissimilar welding of aluminium alloy to high strength steels: mechanical properties and their relation to microstructure. Mater Sci Eng A 556:175–183. doi: 10.1016/j.msea.2012.06.076 CrossRefGoogle Scholar
  43. Cristino VA, Montanari L, Silva MB, Atkins AG, Martins PAF (2014) Fracture in hole-flanging produced by single point incremental forming. Int J Mech Sci 83:146–154. doi: 10.1016/j.ijmecsci.2014.04.001 CrossRefGoogle Scholar
  44. Denkena B, Hollmann F (2013) Process machine interactions. Predicition and manipulation of interactions between manufacturing processes and machine tool structures. Springer, BerlinGoogle Scholar
  45. Denkena B, Müller C (2005) Komplettbearbeitung komplexer Werkstücke. In: Klaus Weinert (ed) Spanende Fertigung. Prozesse, Innovationen, Werkstoffe. Vulkan, Essen, pp 79–89Google Scholar
  46. Dickerson T, Shi Q, Shercliff H (2003) Heat flow into friction stir welding tools. In: Proceeding of the 4th international symposium on friction stir welding, Park City, UtahGoogle Scholar
  47. Diettrich J (2011) Koaxiale Strahlführungs- und -formungssysteme für die hybride Lasermaterialbearbeitung. Dissertation, RWTH Aachen UniversityGoogle Scholar
  48. Dilthey U (2006) Schweisstechnische Fertigungsverfahren 1 - Schweiß- und Schneidtechnologien, 3rd edn. Springer, BerlinGoogle Scholar
  49. DIN (2009) DIN EN ISO 12004-2:2009-02: Metallische Werkstoffe - Bleche und Bänder - Bestimmung der Grenzformänderungskurve - Teil 2: Bestimmung von Grenzformänderungskurven im LaborGoogle Scholar
  50. DIN (2010) Geometrische Produktspezifikation (GPS) - Annahmeprüfung und Bestätigungsprüfung für Koordinatenmessgeräte (KMG) - Teil 2: KMG angewendet für Längenmessungen (DIN EN ISO 10360-2:2010-06)Google Scholar
  51. DMG Mori Seiki (2011) LASERTEC-Baureihe - Oberflächenstrukturieren, 3D-Abtragen, Feinschneiden und Bohren mit Laser. Corporate publication, DMG Mori Seiki, StuttgartGoogle Scholar
  52. Duflou J, Verbert J, Tunckol Y, Gelaude F, Lauwers B (2005) Customised medical implant production by means of single point incremental forming. In: Proceedings of the 2nd international conference on manufacturing engineering, pp 217–225Google Scholar
  53. Duflou JR, Callebaut B, Verbert J, de Baerdemaeker H (2007) Laser assisted incremental forming: formability and accuracy improvement. CIRP Ann Manuf Technol 56(1):273–276. doi: 10.1016/j.cirp.2007.05.063 CrossRefGoogle Scholar
  54. Duflou JR, Callebaut B, Verbert J, de Baerdemaeker H (2008) Improved SPIF performance through dynamic local heating. Int J Mach Tools Manuf 48(5):543–549. doi: 10.1016/j.ijmachtools.2007.08.010 CrossRefGoogle Scholar
  55. Ehrlenspiel K, Kiewert A, Lindemann U (2007) Kostengünstig Entwickeln und Konstruieren. Kostenmanagement bei der integrierte Produktentwicklung. Springer, HeidelbergGoogle Scholar
  56. ElMaraghy H (2007) Reconfigurable process plans for responsive manufacturing systems. In: Cunha Pedro F, Maropoulos PG (eds) Digital enterprise technology. Perspectives and future challenges. Springer, Berlin,New York, pp 35–44CrossRefGoogle Scholar
  57. ElMaraghy H, Hoda A (2011) Enabling manufacturing competitiveness and economic sustainability. In: Proceedings of the 4th international conference on changeable, agile, reconfigurable and virtual production (CARV2011). Springer, HeidelbergGoogle Scholar
  58. ElMaraghy H, AlGeddawy T, Azab A (2008) Modelling evolution in manufacturing: a biological analogy. CIRP Ann Manuf Technol 57(1):467–472. doi: 10.1016/j.cirp.2008.03.136 CrossRefGoogle Scholar
  59. ElMaraghy W, ElMaraghy H, Tomiyam T, Monostori L (2012) Complexity in engineering design and manufacturing. CIRP Ann Manuf Technol 61(2):793–814. doi: 10.1016/j.cirp.2012.05.001 CrossRefGoogle Scholar
  60. Fahrenwaldt HJ, Schuler V (2006) Praxiswissen Schweißtechnik - Werkstoffe, Prozesse, Fertigung, 2nd edn. Vieweg, WiesbadenGoogle Scholar
  61. Fahrenwaldt H, Schuler V, Twrdek J (2014) Praxiswissen Schweißtechnik. Werkstoffe, Prozesse, Fertigung, 4th revised and reworked Edition. Springer, WiesbadenGoogle Scholar
  62. Feiner A (2005) Werkzeugmaschinen für die Produktion von morgen im Spannungsfeld: flexibel und einfach, schnell und genau. In: Brecher C (ed) Wettbewerbsfaktor Produktionstechnik, Aachener Perspektiven. Shaker, Aachen, pp 373–409Google Scholar
  63. Franke HJ (1999) Ungelöste Probleme der Konstruktionsmethodik. In: Franke HJ (ed) Konstruktionsmethodik. Shaker, Aachen, pp 13–30Google Scholar
  64. Fujii H, Kato H, Nakata K, Nogi K (2008) Friction stir welding of high-temperature materials (Mo, Ti). In: Proceedings of the 6th international FSW symposium. Montreal, Canada, pp 10–13Google Scholar
  65. Fujii H, Tatsuno T, Tsumura T, Tanaka M, Nakata K (2008b) Hybrid friction stir welding of carbon steel. Mater Sci Forum 580–582:393–396CrossRefGoogle Scholar
  66. Garnich F (1992) Laserbearbeitung mit Robotern. Dissertation, TU MünchenGoogle Scholar
  67. Göttmann A, Diettrich J, Bergweiler G, Bambach M, Hirt G, Loosen P, Poprawe R (2011) Laser-assisted asymmetric incremental sheet forming of titanium sheet metal parts. Prod Eng Res Devel 5(3):263–271. doi: 10.1007/s11740-011-0299-9 CrossRefGoogle Scholar
  68. Göttmann A, Korinth M, Taleb Araghi B, Bambach M, Hirt G (2012) Manufacturing of cranial implants using incremental sheet metal forming. 02 May 2012Google Scholar
  69. Göttmann A, Bailly David, Bergweiler G, Bambach M, Stollenwerk J, Hirt G et al (2013a) A novel approach for temperature control in ISF supported by laser and resistance heating. Int J Adv Manuf Technol 67(9–12):2195–2205Google Scholar
  70. Göttmann A, Mertin C, Mosecker L, Naumov A, Bambach M (2013b) Properties of friction stir welded blanks made from DC04 mild steel and aluminum AA6016. Adv Mater Res 769:237–244. doi: 10.4028/www.scientific.net/AMR.769.237 CrossRefGoogle Scholar
  71. Goyal KK, Jain PK, Jain M (2013) A novel methodology to measure the responsiveness of RMTs in reconfigurable manufacturing system. J Manuf Syst 32(4):724–730. doi: 10.1016/j.jmsy.2013.05.002 CrossRefGoogle Scholar
  72. Grote KH, Feldhusen J (2011) Dubbel – Taschenbuch für den Maschinenbau, 21st edn. T Fertigungsmittel. Springer, Berlin, p 1343Google Scholar
  73. Grundler E (2002) Weg vom einfachen Drehteil - hin zur Komplettbearbeitung. In: VDI-Z Integrierte Produktion 144(11–12)Google Scholar
  74. GUM (1995) Guide to the expression of uncertainty in measurement. International Organization for Standardization, GenèveGoogle Scholar
  75. Habedank G, Theiler C, Grupp M, Kohn H, Sepold G, Vollertsen F (2003) Laser beam cladding of steel with high power diode lasers. In: Proceedings of the second international WLT-conference on lasers in manufacturing, Munich, BIAS Bremer Institut für angewandte Strahltechnik GmbHGoogle Scholar
  76. Haferkamp H, Bach F, Gerken J, Ebsen H (1993) Laserstrahlauftragschweißen an Bauteilen für den industriellen Einsatz. Schweißen und Schneiden 45(9):513–515Google Scholar
  77. Hansen F (1965) Konstruktionssystematik, 2nd edn. VEB Verlag Technik, BerlinGoogle Scholar
  78. Heisel U, Richter F, Wurst KH (1997) Thermal behaviour of industrial robots and possibilities for error compensation. CIRP Ann Manuf Technol 46(1):283–286CrossRefGoogle Scholar
  79. Heller JE, Feldhusen J (2013) Enhanced function structure applicability through adaptive function template. In: ATINER’s conference paper series, AthensGoogle Scholar
  80. Heller JE, Löwer M, Feldhusen J (2014a) Rethinking morphological analysis application for concept synthesis in engineering design. In: ATINER’s conference paper series, AthensGoogle Scholar
  81. Heller JE, Schmid A, Löwer M, Feldhusen J (2014b) The Dilemma of morphological analysis in product concept synthesis—new approaches for industry and academia. In: International Design Conference (DESIGN 2014), CroatiaGoogle Scholar
  82. Hernla M (2007) Messunsicherheit bei Koordinatenmessungen. Abschätzung der aufgabenspezifischen Messunsicherheit mit Hilfe von Berechnungstabellen. Expert, RenningenGoogle Scholar
  83. Hino R, Kawabata K, Yoshida F (2014) Incremental forming with local heating by laser irradiation for magnesium alloy sheet. Proc Eng 81:2330–2335. doi: 10.1016/j.proeng.2014.10.329 CrossRefGoogle Scholar
  84. Hinsch M, Heller JE, Feldhusen J (2012) Improved application of design methodology. Taking man-induced disturbances into account. In: Proceedings of the 14th internal conference on engineering and product design education E&PDE, AntwerpGoogle Scholar
  85. Hirt G, Ames J, Bambach M, Kopp R, Hirt G (2004) Forming strategies and process modelling for CNC incremental sheet forming. CIRP Ann Manuf Technol 53(1):203–206. doi: 10.1016/S0007-8506(07)60679-9 CrossRefGoogle Scholar
  86. Hirt G, Bambach M, Bailly D, Trautz M, Heyden HW, Herkrath R et al (2014) Untersuchung zur Herstellbarkeit von frei geformten Hüll- und Fassadenelementen als selbsttragende Struktur ohne Unterkonstruktion aus nichtrostendem Stahl mittels inkrementeller Blechumformung (IBU). Verlag und Vertriebsgesellschaft mbH, DüsseldorfGoogle Scholar
  87. Hubka V (1973) Theorie der Maschinensysteme. Grundlagen einer wissenschaftlichen Konstruktionslehre. Springer, HeidelbergGoogle Scholar
  88. ISO (1996) Test code for machine tools (ISO 230)Google Scholar
  89. ISO (2000) Geometrical product specifications (GPS). Acceptance and reverification tests for coordinate measuring machines (CMM) (ISO 10360)Google Scholar
  90. ISO (2012) Geometrical product specifications (GPS)—geometrical tolerancing—tolerances of form, orientation, location and run-out (ISO 1101)Google Scholar
  91. Jackson KP, Allwood JM, Landert M (2008) Incremental forming of sandwich panels. J Mater Process Technol 204(1–3):290–303CrossRefGoogle Scholar
  92. Jalizi M, Korff D, Rost R (2009) Alleskönner oder Teamplayer. Mehrtechnologiemaschinen versus Mehrmaschinenkonzepte. In: Werkstatt und Betrieb 10/2009: 12–17Google Scholar
  93. Janeczko J, Griffin B, Wang C (2000) Laser vector measurement technique for the determination and compensation of volumetric position errors. Part II: Experimental verification. Rev Sci Instrum 71(10):3938. doi: 10.1063/1.1290505
  94. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann 54(2):623–649CrossRefGoogle Scholar
  95. Jiang WH, Kovacevic R (2004) Feasibility study of friction stir welding of 6061-T6 aluminium alloy with AISI 1018 steel. Proc Inst Mech Eng Part B J Eng Manuf 218(10):1323–1331CrossRefGoogle Scholar
  96. Klocke F, Brecher C, Heinen D, Rosen C, Breitbach T (2010) Flexible scanner-based laser surface treatment. Laser Assist Net Shape Eng 6(5–1):467–475Google Scholar
  97. Klocke F, Heinen D, Schongen F, Arntz K, Bäcker V, Feldhaus B (2012) Wear protection of tools by local geometry and material optimization. In: 9th tooling conference/4th international conference on heat treatment of tools and dies, pp 613–620Google Scholar
  98. Knapp W (2002) Measurement uncertainty and machine tool testing. CIRP Ann Manuf Technol 51(1):459–462. doi: 10.1016/S0007-8506(07)61560-1 CrossRefGoogle Scholar
  99. Koller R (1998) Konstruktionslehre für den Maschinenbau. Grundlagen zur Neu- und Weiterentwicklung teschnischer Produkte. Springer, BerlinCrossRefGoogle Scholar
  100. Koller R, Kastrup N (1999) Prinziplösungen zur Konstruktion technischer Produkte. Springer, BerlinGoogle Scholar
  101. Koren Y (2010) The global manufacturing revolution, product-process-business integration and reconfigurable systems. Wiley, Hoboken, NJCrossRefGoogle Scholar
  102. Koren Y (2013) The global manufacturing revolution. Product-process-business integration and reconfigurable systems. In: Wiley series in systems engineering and management 80. Wiley, Hoboken, NJGoogle Scholar
  103. Koren Y, Shpitalni M (2010) Design of reconfigurable manufacturing systems. J Manuf Syst 29(4):130–141. doi: 10.1016/j.jmsy.2011.01.001 CrossRefGoogle Scholar
  104. Koren Y, Hu SJ, Weber TW (1998) Impact of manufacturing system configuration on performance. CIRP Ann Manuf Technol 47(1):369–372. doi: 10.1016/S0007-8506(07)62853-4 CrossRefGoogle Scholar
  105. Kozak J, Rajurkar K (2000) Hybrid machining process evaluation and development. In: Second international conference on machining and measurements of sculptured surfaces, pp 501–536Google Scholar
  106. Kroh R (2014) Vertikaldrehmaschine für die großvolumige Getriebeproduktion. In: MaschinenMarkt. http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/zerspanung/articles/455228/. Accessed 18 Dec 2015
  107. KUKA Roboter GmbH (2004) Intelligenter roboter. http://www.kuka.com/nl_media/06/vortrag_intelligenter_roboter.pdf. Accessed 18 Dec 2015
  108. Landolt-Börnstein (2009) New series VIII/2C1. In: Warlimont H (ed) Metal forming data of ferrous alloys—deformation behaviour. Springer, Berlin. doi: 10.1007/978-3-540-44760-3_43
  109. Lange K (1990) Umformtechnik - Handbuch für die Industrie und Wissenschaft (Blechbearbeitung, 3). Springer, BerlinGoogle Scholar
  110. Läpple V (2010) Wärmebehandlung des Stahls. Europa Lehrmittel (Bibliothek des technischen Wissens), pp 192-193Google Scholar
  111. Laugwitz M (2015) Prozessbeschleunigung und funktionale Erweiterung um formschlüssiges Fügen des inkrementellen Kragenziehens. Master thesis, RWTH Aachen UniversityGoogle Scholar
  112. Lee G, Kim S (2012) Case study of mass customization of double-curved metal façade panels using a new hybrid sheet metal processing technique. J Constr Eng Manage 138(11):1322–1330. doi: 10.1061/(ASCE)CO.1943-7862.0000551 MathSciNetCrossRefGoogle Scholar
  113. Leung MKH, Man HC, Yu JK (2007) Theoretical and experimental studies on laser transformation hardening of steel by customized beam. Int J Heat Mass Transf 50:4600–4606CrossRefzbMATHGoogle Scholar
  114. Levin MS (2006) Composite systems decisions. Springer, LondonGoogle Scholar
  115. Levin MS (2012) Morphological methods for design of modular systems (a survey). In: Computing research repositoryGoogle Scholar
  116. Lindemann U, Ponn J (2008) Konzeptentwicklung und Gestaltung technischer Produkte. Springer, HeidelbergGoogle Scholar
  117. Livatyali H, Larris SJ (2004) Experimental investigation on forming defects in flat surface–convex edge hemming: roll, recoil and warp. J Mater Process Technol 153–154:913–919. doi: 10.1016/j.jmatprotec.2004.04.425 CrossRefGoogle Scholar
  118. Male A, Cockcroft M (1945) A method for the determination of the coefficient of friction of metals under conditions of bulk plastic deformation. J Inst Met 215–233Google Scholar
  119. Mayr J, Jedrzejewski J, Uhlmann E, Donmez MA, Knapp W, Härtig F et al (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791. doi: 10.1016/j.cirp.2012.05.008 CrossRefGoogle Scholar
  120. Merklein M, Johannes M, Lechner M, Kuppert A (2014) A review on tailored blanks—production, applications and evaluation. J Mater Process Technol 214(2):151–164. doi: 10.1016/j.jmatprotec.2013.08.015 CrossRefGoogle Scholar
  121. Mertin C, Naumov A, Mosecker L, Bambach M, Hirt G (2014) Influence of the process temperature on the properties of friction stir welded blanks made of mild steel and aluminum. KEM 611–612:1429–1436. doi: 10.4028/www.scientific.net/KEM.611-612.1429 CrossRefGoogle Scholar
  122. Micari F, Ambrogio G, Filice L (2007) Shape and dimensional accuracy in single point incremental forming. State of the art and future trends. J Mater Process Technol 191(1–3):390–395Google Scholar
  123. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50(1–2):1–78. doi: 10.1016/j.mser.2005.07.001 CrossRefGoogle Scholar
  124. Montanari L, Cristino V, Silva M, Martins P (2014) On the relative performance of hole-flanging by incremental sheet forming and conventional press-working. Proc Inst Mech Eng Part L J Mater Des Appl 228(4):312–322. doi: 10.1177/1464420713492149 Google Scholar
  125. Moon YM, Kota S (2002) Generalized kinematic modeling of reconfigurable machine tools. J Mech Des 124(1):47. doi: 10.1115/1.1424892 CrossRefGoogle Scholar
  126. Moriwaki T (2008) Multi-functional machine tool. CIRP Ann Manuf Technol 57(2):736–749. doi: 10.1016/j.cirp.2008.09.004 MathSciNetCrossRefGoogle Scholar
  127. Mosecker L, Göttmann A, Saeed-Akbari A, Bleck W, Bambach M, Hirt G (2013) Deformation mechanisms of Ti6Al4V sheet material during the incremental sheet forming with laser heating. KEM 549:372–380CrossRefGoogle Scholar
  128. Nandan R, Roy G, Debroy T (2006) Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metall Mater Trans 1247–1259Google Scholar
  129. Neugebauer R, Altan T, Geiger M, Kleiner M, Sterzing A (2006) Sheet metal forming at elevated temperatures. CIRP Ann Manuf Technol 55(2):793–816. doi: 10.1016/j.cirp.2006.10.008 CrossRefGoogle Scholar
  130. Pahl G, Beitz W, Feldhusen J, Grote K (2013) Pahl/Beitz Konstruktionslehre -Methoden und Anwendung erfolgreicher Produktentwicklung. Springer, HeidelbergGoogle Scholar
  131. Partes K (2009) Analytical model of the catchment efficiency in high speed laser cladding. Surf Coat Technol 204(3):366–371. doi: 10.1016/j.surfcoat.2009.07.041 CrossRefGoogle Scholar
  132. Pearson SR, Shipway PH, Abere JO, Hewitt RAA (2013) The effect of temperature on wear and friction of a high strength steel in fretting. Wear 303(1–2):622–631CrossRefGoogle Scholar
  133. Petek A, Kuzman K (2012) Backward hole-flanging technology using an incremental approach. SV-JME 58(2):73–80. doi: 10.5545/sv-jme.2011.194 CrossRefGoogle Scholar
  134. Pogacnik M, Kopac J (2000) Dynamic stabilization of the turn-milling process by parameter optimization. Proc Inst Mech Eng Part B J Eng Manuf 214(2):127–135. doi: 10.1243/0954405001517504
  135. Popov V, Psakhie S, Shilko E, Dmitriev A, Knothe K, Bucher F, Ertz M (2002) Friction coefficient in rail-wheel contacts as a function of material and loading parameters. Phys Mesomech 17–24Google Scholar
  136. Rajurkar K, Zhu D, McGeough J, Kozak J, De Silva A (1999) New development in electro-chemical-machining. CIRP Ann 48(2):567–579CrossRefGoogle Scholar
  137. Reisgen U, Schleser M, Harms A, Schiebahn A, Naumov A (2011) Erweiterung des Parameterfelds zum Rührreibschweißen mittels konduktiver Unterstützung. In: Schweißen und Schneiden 63, DVS Media, DüsseldorfGoogle Scholar
  138. Reisgen U, Schleser M, Naumov A (2013) Temperaturgeregeltes Rührreibschweißen. In: DVS-Berichte 295. DVS Media, DüsseldorfGoogle Scholar
  139. Reisgen U et al (2014) Feasibility study on the use of adhesive fixation in conjunction with friction stir welding. Int J Eng Res 3(2)Google Scholar
  140. Rodenacker WG (1991) Methodisches Konstruieren: Grundlagen, Methodik, praktische Beispiele. Springer, BerlinCrossRefGoogle Scholar
  141. Roderburg A, Klocke F (2013) Methodik zur Entwicklung von hybriden Fertigungstechnologien. Apprimus, AachenGoogle Scholar
  142. Röhr H (2010) CNC-Mehrspindler fertigen komplexe Automobilteile. In: maschinen anlagen verfahren (mav) Sonderdruck, July/August 2010Google Scholar
  143. Schmidt H, Hattel J (2005) A local model for the thermomechanical conditions in friction stir welding. Model Simul Mater Sci Eng 77–93Google Scholar
  144. Schmieder M, Mehrtens P (2013) Cladding freeform surfaces with curved metal panels—a complete digital production chain. In: Hesselgren L, Sharma S, Wallner J, Baldassini N (eds) Advances in architectural geometry 2012. Springer, Vienna, pp 237–242CrossRefGoogle Scholar
  145. Schmitt R, Peterek M (2015) Traceable measurements on machine tools—thermal influences on machine tool structure and measurement uncertainty. Proc CIRP 33:576–580. doi: 10.1016/j.procir.2015.06.087 CrossRefGoogle Scholar
  146. Schmitt R, Jatzkowski P, Peterek M (2013) Traceable measurements using machine tools. In: Blunt L (ed) Laser metrology and machine performance X. 10th international conference and exhibition on laser metrology, machine tool, CMM & Robotic Performance, Cranfield, pp 133–143Google Scholar
  147. Schmitz R (2015) Prozessoptimierung für die Herstellung mehrlagiger selbsttragender Freiformstrukturen mit einer Prozesskombination aus Streckziehen und Inkrementeller Blechumformung. Master thesis, RWTH Aachen UniversityGoogle Scholar
  148. Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines—an update. CIRP Ann Manuf Technol 57(2):660–675. doi: 10.1016/j.cirp.2008.09.008 CrossRefGoogle Scholar
  149. Smid P (2003) CNC programming handbook: a comprehensive guide to practical CNC programming. Industrial Press. https://books.google.de/books?id=JNnQ8r5merMC. Accessed 18 Dec 2015
  150. Siemens PLM Software (2010) Master the challenges of programming multi-function machines. http://m.plm.automation.siemens.com/en_us/Images/4746_tcm1224-54502.pdf. Accessed 18 Dec 2015
  151. Siemens PLM Software (2015) RobotExpert fact sheet. Plug-n-Play software solution for robotics simulation and programming. https://m.plm.automation.siemens.com/en_us/Images/Siemens-PLM-Tecnomatix-RobotExpert-fs_tcm1224-190476.pdf. Accessed 18 Dec 2015
  152. Song M, Kovacevic R (2003) Thermal modeling of friction stir welding in a moving coordinate system and its validation. Int J Mach Tools Manuf 43(6):605–615. doi: 10.1016/S0890-6955(03)00022-1 CrossRefGoogle Scholar
  153. Soriano C, Leunda J, Lambarri J, García Navas V, Sanz C (2011) Effect of laser surface hardening on the microstructure, hardness and residual stresses of austempered ductile iron grades. Appl Surf Sci 257:7101–7106CrossRefGoogle Scholar
  154. Spicer P, Koren Y, Shpitalni M, Yip-Hoi D (2002) Design principles for machining system configurations. CIRP Ann Manuf Technol 51(1):275–280CrossRefGoogle Scholar
  155. Taleb Araghi B (2011) Inkrementelle Blechumformung und ihre Kombination mit Streckziehen - Grundlagen und Anwendungen. Dissertation, RWTH Aachen UniversityGoogle Scholar
  156. Taleb Araghi B, Manco GL, Bambach M, Hirt G (2009) Investigation into a new hybrid forming process: incremental sheet forming combined with stretch forming. CIRP Ann Manuf Technol 58(1):225–228. doi: 10.1016/j.cirp.2009.03.101 CrossRefGoogle Scholar
  157. Tang W, Guo X, McClure J, Murr L (1998) Heat input and temperature distribution in friction stir welding. J Mater Process Manuf Sci 7:163–172CrossRefGoogle Scholar
  158. Tartakovsky A, Grant G, Sun X, Khalel M (2006) Modeling of friction stir welding (FSW) process with smoothed particle hydrodynamics (SPH). In: Proceeding of the 2006 SAE world congress, MichiganGoogle Scholar
  159. Thomas WM, Nicholas ED, Needham JC, Much MG, Temple-Smith P, Dawes CJ (1995) Friction welding. Patent registered by The Welding Institute (TWI). Patent no: 5,460,317Google Scholar
  160. Tolio T, Ceglarek D, ElMaraghy HA, Fischer A, Hu SJ, Laperrière L et al (2010) SPECIES—Co-evolution of products, processes and production systems. CIRP Ann Manuf Technol 59(2):672–693. doi: 10.1016/j.cirp.2010.05.008 CrossRefGoogle Scholar
  161. Tönissen S (2014) Economic efficiency of manufacturing technology integration. In: Technologie der Fertigungsverfahren 42/2014. Apprimus, AachenGoogle Scholar
  162. Trapet E (1999) Traceability of coordinate measurements according to the method of the virtual measuring machine. Part 2 of the final report project MAT1-CT94-0076. PTB-Bericht F, 35, BremerhavenGoogle Scholar
  163. Ulysse P (2002) Three-dimensional modeling of the friction stir welding process. Int J Mach Tools Manuf 1549–1557Google Scholar
  164. Vahdati AR, Vahdati M (2009) Applying a new method for incremental sheet metal forming with high speed. In: The Annals of “Dunarea De Jos” University of Galati Fascicle V, Technologies in Machine BuildingGoogle Scholar
  165. Vanhove H, Duflou JR (2015) Negative bulge formation in high speed incremental forming. KEM 639:173–178. doi: 10.4028/www.scientific.net/KEM.639.173 CrossRefGoogle Scholar
  166. VDI (1990) Montage- und Handhabungstechnik. Handhabungsfunktionen, Handhabungseinrichtungen, Begriffe, Definitionen, Symbole (VDI 2860)Google Scholar
  167. VDI (1993) Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte (VDI 2221)Google Scholar
  168. VDI (2004) Entwicklungsmethodik für mechatronische Systeme (VDI 2206)Google Scholar
  169. Vilar R (1999) Laser alloying and laser cladding. Deparamento de Engenharia de Materiais, Instituto Superior TecnicoGoogle Scholar
  170. Vollertsen F, Partes K, Meijer J (2005) State of the art of laser hardening and cladding. In: Proceedings of the Third International WLT-Conference on Lasers in Manufacturing, MunichGoogle Scholar
  171. Voswinckel H, Bambach M, Hirt G (2015) Improving geometrical accuracy for flanging by incremental sheet metal forming. Int J Mater Form 8(3):391–399. doi: 10.1007/s12289-014-1182-y CrossRefGoogle Scholar
  172. Wang C (2000) Laser vector measurement technique for the determination and compensation of volumetric positioning errors. Part I: basic theory. Rev Sci Instrum 71(10):3933. doi: 10.1063/1.1290504
  173. Weck M, Brecher C (2006a) Werkzeugmaschinen 2: Konstruktion und Berechnung. Springer, BerlinCrossRefGoogle Scholar
  174. Weck M, Brecher C (2006b) Werkzeugmaschinen 4: Automatisierung von Maschinen und Anlagen. Springer, BerlinCrossRefGoogle Scholar
  175. Weinert K, Finke M, Johlen G (2001) Flexible Hartbearbeitung von Futterteilen durch Hartdrehen und Schleifen. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 96(9):463–467Google Scholar
  176. Welsch G, Bunk W (1982) Deformation modes of the α-phase of ti-6al-4v as a function of oxygen concentration and aging temperature. MTA 13(5):889–899. doi: 10.1007/BF02642403 CrossRefGoogle Scholar
  177. Wiendahl HP, Scholtissek P (1994) Management and control of complexity in manufacturing. CIRP Ann Manuf Technol 43(2):533–540. doi: 10.1016/S0007-8506(07)60499-5 CrossRefGoogle Scholar
  178. Wiendahl HP, ElMaraghy HA, Nyhuis P, Zäh MF, Wiendahl HH, Duffie N, Brieke M (2007) Changeable manufacturing—classification, design and operation. CIRP Ann Manuf Technol 56(2):783–809. doi: 10.1016/j.cirp.2007.10.003 CrossRefGoogle Scholar
  179. Wilden J (2005) Beschichten mit dem Laserstrahl. Verschleiß- und Verschleißschutz von Schnecken und Zylindern für Extruder und Spritzgießmaschinen. M0-M26Google Scholar
  180. Yang L, Yang X, Lao D, Zhu J, Ye S (2010) Large-scale coordinates measurement method based on intersection of optical planes. Infrared Laser Eng 6:31Google Scholar
  181. Yao C, Xu B, Huang J, Zhang P, Wu Y (2010) Study on the softening in overlapping zone by laser-overlapping scanning surface hardening for carbon and alloyed steel. Opt Lasers Eng 48:20–26CrossRefGoogle Scholar
  182. Zhang HL, Li MZ, Fu WZ, Chen X (2011) Study of multi-point flexible floating clamping system of multi-roll stretch forming process. Adv Mater Res 291–294:282–285. doi: 10.4028/www.scientific.net/AMR.291-294.282 CrossRefGoogle Scholar
  183. Zhu Z, Shokia VG, Nassehi A, Newman ST (2013) A review of hybrid manufacturing processes—state of the art and future perspectives. Int J Comput Integr Manuf 26(7):596–615CrossRefGoogle Scholar
  184. Zwicky F (1966) Entdecken, Erfinden, Forschen im Morphpologischen Weltbild. Droemer-Knaur, MünchenGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christian Brecher
    • 1
  • Wolfgang Bleck
    • 2
  • Jörg Feldhusen
    • 3
  • Gerhard Hirt
    • 4
  • Fritz Klocke
    • 1
  • Uwe Reisgen
    • 5
  • Robert Schmitt
    • 1
  • David Bailly
    • 4
  • Markus Bambach
    • 6
  • Laura Conrads
    • 4
  • Frédéric du Bois-Reymond
    • 1
  • Alexander Göttmann
    • 4
  • Stefan Gräfe
    • 7
  • Mohamed Harraz
    • 8
  • Jan Erik Heller
    • 3
  • Werner Herfs
    • 1
  • Krishna Chaitanya Komerla
    • 2
  • Marvin Laugwitz
    • 4
  • Manuel Löwer
    • 3
  • Chris Mertin
    • 4
  • Andreas Naumov
    • 5
  • Johannes Nittinger
    • 1
  • Martin Peterek
    • 1
  • Ulrich Prahl
    • 2
  • Jan Rey
    • 1
  • Alexander Schiebahn
    • 9
  • Alexander Schmid
    • 3
  • Roman Schmitz
    • 4
  • Stefan Tönissen
    • 10
  • Holger Voswinckel
    • 4
  • Maximilian Wegener
    • 7
  • Frederik Wellmann
    • 1
  1. 1.Laboratory for Machine Tools and Production Engineering (WZL)RWTH Aachen UniversityAachenGermany
  2. 2.Department of Ferrous Metallurgy (IEHK)RWTH Aachen UniversityAachenGermany
  3. 3.Institute for Engineering Design (IKT)RWTH Aachen UniversityAachenGermany
  4. 4.Institute of Metal Forming (IBF)RWTH Aachen UniversityAachenGermany
  5. 5.Welding and Joining Institute (ISF)RWTH Aachen UniversityAachenGermany
  6. 6.Chair for Mechanical Design and ManufacturingBTU Cottbus-SenftenbergCottbusGermany
  7. 7.Fraunhofer Institute for Production Technology (IPT)AachenGermany
  8. 8.Faculty of Engineering and Materials ScienceGerman University in CairoNew Cairo CityEgypt
  9. 9.Welding and Joining Institute (ISF)RWTH Aachen UniversityAachenGermany
  10. 10.KEX Knowledge Exchange AGAachenGermany

Personalised recommendations