Integrated Computational Materials and Production Engineering (ICMPE)

  • Wolfgang Bleck
  • Christian Brecher
  • Michael Herty
  • Gerhard Hirt
  • Christian Hopmann
  • Fritz Klocke
  • Nikolai Borchmann
  • Jens Dierdorf
  • Hamidreza Farivar
  • Patrick Fayek
  • Axel Häck
  • Viktor Kripak
  • Markus Krömer
  • Gottfried Laschet
  • Ulrich Prahl
  • Markus Rüngeler
  • Georg J. Schmitz
  • Marcel Spekowius
  • Phillip Springer
  • Andre M. Teixeira
Chapter

Abstract

The research area “Integrative Computational Materials and Production Engineering” is based on the partial integration of individual models areas within separated simulation platforms with the objective of further development and integration into a single comprehensive ICMPE (Integrative Computational Materials and Production Engineering) platform that combines materials and machining simulation with factory and production planning. In order to realize an operational platform concept, the AixViPMaP has been implemented. AixViPMaP serves as a technology platform for the knowledge-driven design, implementation and improvement of complicated process chains for materials in high-value components. This allows manufacturing related influences to be considered during production in order to optimize process performance and materials properties. The extension and application of the AixViPMaP platform towards production modeling in the sense of an ICMPE based on one holistic system integrates production related models with all material-related models into a single, unified concept. Advanced test cases are under examination to validate and assess this new integrated approach (e.g., new alloys for large gears for the wind industry).

Keywords

Residual Stress Tool Wear Injection Molding Gauss Point Substitute Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albi G, Bongini M, Cristiani E, Kalise D (2015) Invisible control of self-organizing agents leaving unknown environments. arXiv preprint arXiv:1504.04064
  2. Allwood JM, Cullen JM, Carruth MA (2012) Sustainable materials with both eyes open. UIT Cambridge Ltd, Cambridge, EnglandGoogle Scholar
  3. Alogab KA, Matlock DK, Speer JG, Kleebe HJ (2007) The influence of niobium microalloying on austenite grain coarsening behavior of Ti-modified SAE 8620 steel. ISIJ Int 47(2):307–316. doi: 10.2355/isijinternational.47.307 CrossRefGoogle Scholar
  4. Armbruster D, Degond P, Ringhofer C (2006) A model for the dynamics of large queuing networks and supply chains. SIAM J Appl Math 66(3):896–920MathSciNetCrossRefMATHGoogle Scholar
  5. Assouline E, Wachtel E, Grigull S, Lustiger A, Wagner HD, Marom G (2001) Lamellar twisting in α isotactic polypropylene transcrystallinity investigated by synchrotron microbeam X-ray diffraction. Polymer 42(14):6231–6237. doi: 10.1016/S0032-3861(01)00087-8 CrossRefGoogle Scholar
  6. ASTM, Committee A-1 on Steel, Stainless Steel, and Related Alloys, Subcommittee A01.15 on Bars (2010) Standard test methods for determining hardenability of steel. American Society for Testing and Materials, West Conshohocken, PennsylvaniaGoogle Scholar
  7. Avrami M (1939) Kinetics of phase change. I general theory. J Chem Phys 7(12):1103. doi: 10.1063/1.1750380 CrossRefGoogle Scholar
  8. Bambach M, Schmitz GJ, Prahl U (2013) ICME–a mere coupling of models or a discipline of its own? In: 2nd world congress on integrated computational materials engineering, pp 285–290Google Scholar
  9. Bedoui F, Diani J, Regnier G, Seiler W (2006) Micromechanical modeling of isotropic elastic behavior of semicrystalline polymers. Acta Mater 54(6):1513–1523. doi: 10.1016/j.actamat.2005.11.028 CrossRefGoogle Scholar
  10. Brecher C (2012) Integrative production technology for high-wage countries. Springer, Berlin, New YorkCrossRefGoogle Scholar
  11. Brömsen O (2005) Steigerung der Zahnfusstragfähigkeit von einsatzgehärteten Stirnrädern durch rechnerische Zahnfussoptimierung. Berichte aus der Produktionstechnik, Bd. 2005, 7. Shaker, AachenGoogle Scholar
  12. Calculation of load capacity of spur and helical gears (ISO 6336)Google Scholar
  13. Cardona M, Fulde P, von Klitzing K, Queisser H, Merlin R, Störmer H, Mehrer H (2007) Diffusion in solids, vol 155. Springer, BerlinGoogle Scholar
  14. Castelein G, Coulon G, G’sell C (1997) Polymers under mechanical stress: deformation of the nanostructure of isotactic polypropylene revealed by scanning force microscopy. Polym Eng Sci 37(10):1694–1701. doi: 10.1002/pen.11817 CrossRefGoogle Scholar
  15. Clausen B, Konovalov S, Hoffmann F, Prahl U, Zoch H, Bleck W (2010) Feinkornbeständigkeit von Bauteilen aus dem mikrolegierten Werkstoff 18CrNiMo7-6 in Abhängigkeit der Prozesskette. HTM 65(5):257–268. doi: 10.3139/105.110073 CrossRefGoogle Scholar
  16. Coppola S, Grizzuti N, Maffettone PL (2001) Microrheological modeling of flow-induced crystallization. Macromolecules 34(14):5030–5036. doi: 10.1021/ma010275e CrossRefGoogle Scholar
  17. Cullen JM, Allwood JM, Bambach MD (2012) Mapping the global flow of steel: from steelmaking to end-use goods. Environ Sci Technol 46(24):13048–13055. doi: 10.1021/es302433p CrossRefGoogle Scholar
  18. D’Apice C (2010) Modeling, simulation, and optimization of supply chains: a continuous approach. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
  19. Davis JR (2005) Gear materials, properties, and manufacture. ASM International, Materials Park, OhioGoogle Scholar
  20. Degond P, Göttlich S, Herty M, Klar A (2007) A network model for supply chains with multiple policies. Multiscale Model Simul 6(3):820–837. doi: 10.1137/060670316 MathSciNetCrossRefMATHGoogle Scholar
  21. Dieter GE, Kuhn HA, Semiatin SL (2003) Handbook of workability and process design. ASM International, Materials Park, OHGoogle Scholar
  22. Doi M, Edwards SF (1986) The theory of polymer dynamics. The international series of monographs on physics, vol 73. Clarendon Press, OxfordGoogle Scholar
  23. Europäisches Komitee für Normung (2012) Stahl - Mikrophotographische Bestimmung der erkennbaren Korngröße (ISO 643:2012–12)Google Scholar
  24. Fetters LJ, Lohse DJ, Colby RH (2007) Chain dimensions and entanglement spacings. In: Mark JE (ed) Physical properties of polymers handbook. Springer, New York, pp 447–454CrossRefGoogle Scholar
  25. Frotey M, Sourmail T, Munier R (2013) Alternative to Ni bearing steels for deep carburizing of wind turbine gears. In: Abel D (ed) Conference for wind power drives CWD 2013: Tagungsband Aachen, 19–20 März 2013, 1. Auflage Apprimus-Verleger, Aachen, pp 167–180Google Scholar
  26. Frühe T (2012) Berechnung und Minimierung der Zahnfußspannung von Standard- und LowLoss-Verzahnungen. Ingenieurwissenschaften. Dr, Hut, MünchenGoogle Scholar
  27. Gawroński Z, Malasiński A, Sawicki J (2010) Elimination of galvanic copper plating process used in hardening of conventionally carburized gear wheels. Int J Automot Technol 11(1):127–131. doi: 10.1007/s12239-010-0017-1
  28. Gorockiewicz R (2011) The kinetics of low-pressure carburizing of alloy steels. Vacuum 86(4):448–451. doi: 10.1016/j.vacuum.2011.09.006 CrossRefGoogle Scholar
  29. Gräfen W, Edenhofer B (2005) New developments in thermo-chemical diffusion processes. Surf Coat Technol 200(5–6):1830–1836. doi: 10.1016/j.surfcoat.2005.08.107 CrossRefGoogle Scholar
  30. Grossmann M (1942) Hardenability calculations from chemical composition. AIME Trans 150:227–259Google Scholar
  31. Haeck A, Bambach M, Herty M (2015) Modeling steel rolling processes by fluid–like differential equations preprint. RWTH Aachen, IGPMGoogle Scholar
  32. Hemmelmann JE (2007) Simulation des lastfreien und belasteten Zahneingriffs zur Analyse der Drehübertragung von Zahnradgetrieben. Dissertation, RWTH AachenGoogle Scholar
  33. Henke T, Hirt G, Bambach M (2013) Randwertermittlung für die robuste Auslegung von Schmiedeprozessen. Werkstatttechnik online 103(10):783–788Google Scholar
  34. Herty M, Jörres C, Sandjo AN (2012) Optimization of a model Fokker-Planck equation. Kinet Relat Models 5(3):485–503MathSciNetCrossRefMATHGoogle Scholar
  35. Hippenstiel F, Mohrbacher H (2011) Optimization of molybdenum alloyed carburizing steels by Nb microalloying for large gear applications. In: Materials science and technology, Columbus, OH Google Scholar
  36. Hirschvogel M, Dommelen H (1992) Some applications of cold and warm forging. J Mater Process Technol 35(3–4):343–356. doi: 10.1016/0924-0136(92)90326-N CrossRefGoogle Scholar
  37. Hirt G, Bambach M, Seuren S, Henke T, Lohmar J (2013) Recent developments in modeling of hot rolling processes: Part I—fundamentals. In: The 11th international conference on numerical methods in industrial forming processes: numiform 2013. AIP, pp 222–230Google Scholar
  38. Hoffman JD, Davis GT, Lauritzen JI (1976) The rate of crystallization of linear polymers with chain folding. In: Hannay NB (ed) Treatise on solid state chemistry. Springer, Boston, pp 497–614CrossRefGoogle Scholar
  39. Ivanov DS, Lomov SV, Ivanov SG, Verpoest I (2010) Stress distribution in outer and inner plies of textile laminates and novel boundary conditions for unit cell analysis. Compos A Appl Sci Manuf 41(4):571–580. doi: 10.1016/j.compositesa.2010.01.004 CrossRefGoogle Scholar
  40. Janeschitz-Kriegl H (2010) Crystallization modalities in polymer melt processing. Springer, ViennaCrossRefGoogle Scholar
  41. Jaster M (2010) Why vacuum carburizing. Geartechnology 27(3):31–35Google Scholar
  42. Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. Trans Metall Soc AIME 135(8):396–415Google Scholar
  43. Just E (1969) New formulas for calculating hardenability curves. Metal Prog 96(5):87–88Google Scholar
  44. Kalpakjian S, Schmid SR (2001) Manufacturing engineering and technology, 4th edn. Pearson, New DelhiGoogle Scholar
  45. Kamezawa M, Yamada K, Takayanagi M (1979) Preparation of ultrahigh modulus isotactic polypropylene by means of zone drawing. J Appl Polym Sci 24(5):1227–1236. doi: 10.1002/app.1979.070240508 CrossRefGoogle Scholar
  46. Khan RU, Bajohr S, Buchholz D, Reimert R, Minh HD, Norinaga K, Janardhanan VM, Tischer S, Deutschmann O (2008) Pyrolysis of propane under vacuum carburizing conditions: an experimental and modeling study. J Anal Appl Pyrol 81(2):148–156. doi: 10.1016/j.jaap.2007.09.012 CrossRefGoogle Scholar
  47. Klar A, Wegener R (2004) Traffic flow: models and numerics. In: Bellomo N, Degond P, Pareschi L, Russo G (eds) Modeling and computational methods for kinetic equations. Birkhäuser Boston, Boston, MA, pp 219–258CrossRefGoogle Scholar
  48. Klein MM (2012) Zur Fresstragfähigkeit von Kegelrad- und Hypoidgetrieben. Ingenieurwissenschaften. Verlag Dr, Hut, MünchenGoogle Scholar
  49. Kolmogorov VL (1937) On the statistical theory of the crystallization of metals. Bull Russ Acad Sci (1):355–359Google Scholar
  50. Konovalov S (2015) Numerische Entwicklung eines mikrolegierten Einsatzstahls für die Hochtemperatur-Aufkohlung. DissertationGoogle Scholar
  51. Konter AWA, Farivar H, Post J, Prahl U (2015) Industrial needs for ICME. JOM, 1–11Google Scholar
  52. Kopp R, Wiegels H (1999) Einführung in die Umformtechnik, 2nd edn. Aufl. Mainz, AachenGoogle Scholar
  53. Kula P, Dybowski K, Wolowiec E, Pietrasik R (2014) “Boost-diffusion” vacuum carburising—process optimisation. Vacuum 99:175–179. doi: 10.1016/j.vacuum.2013.05.021 CrossRefGoogle Scholar
  54. Kula P, Korecki M, Pietrasik R, Wolowiec E, Dybowski K, Kolodziejczyk L (2009) FineCarb ®—the flexible system for low pressure carburizing. New Options Perform 49(1):133–136Google Scholar
  55. Kula P, Pietrasik R, Dybowski K (2005) Vacuum carburizing—process optimization. J Mater Process Technol 164–165:876–881. doi: 10.1016/j.jmatprotec.2005.02.145 CrossRefGoogle Scholar
  56. Kula P, Wolowiec E, Pietrasik R, Dybowski K, Klimek L (2012) The precipitation and dissolution of alloy iron carbides in vacuum carburization processes for automotive and aircraft applications—Part I. AMR 486:297–302. doi: 10.4028/www.scientific.net/AMR.486.297 CrossRefGoogle Scholar
  57. Laschet G, Apel M (2010) Thermo-elastic homogenization of 3d steel microstructure simulated by the phase-field method. Steel Res Int 81(8):637–643. doi: 10.1002/srin.201000077
  58. Lavtar L, Muhič T, Kugler G, Terčelj M (2011) Analysis of the main types of damage on a pair of industrial dies for hot forging car steering mechanisms. Eng Fail Anal 18(4):1143–1152. doi: 10.1016/j.engfailanal.2010.11.002 CrossRefGoogle Scholar
  59. Li L, Chan C, Yeung KL, Li J, Ng K, Lei Y (2001) Direct observation of growth of lamellae and spherulites of a semicrystalline polymer by AFM. Macromolecules 34(2):316–325. doi: 10.1021/ma000273e CrossRefGoogle Scholar
  60. Liedtke D (2003) Über den Zusammenhang zwischen dem Kohlenstoffgehalt in Stählen und der Härte des Martensits. Mat-wiss u Werkstofftech 34(1):86–92. doi: 10.1002/mawe.200390022 CrossRefGoogle Scholar
  61. Lucyshyn T, Knapp G, Kipperer M, Holzer C (2012) Determination of the transition temperature at different cooling rates and its influence on prediction of shrinkage and warpage in injection molding simulation. J Appl Polym Sci 123(2):1162–1168. doi: 10.1002/app.34591 CrossRefGoogle Scholar
  62. Lütkehus I, Salecker H, Adlunger K (2015) Potenzial der Windenergie an Land. www.umweltbundesamt.de
  63. Luton M, Sellars C (1969) Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation. Acta Metall 17(8):1033–1043. doi: 10.1016/0001-6160(69)90049-2 CrossRefGoogle Scholar
  64. Mamalis AG, Manolakos DE, Baldoukas AK (1996) Simulation of the precision forging of bevel gears using implicit and explicit FE techniques. J Mater Process Technol 57(1–2):164–171. doi: 10.1016/0924-0136(95)02058-6 CrossRefGoogle Scholar
  65. Michaeli W, Hopmann C, Baranowski T, Laschet G, Heesel B, Arping T, Bobzin K, Kashko T, Öte M (2012) Test Case: Technical Plastic Parts. In: Schmitz GJ, Prahl U (eds) Integrative computational materials engineering. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, Germany, pp 221–256CrossRefGoogle Scholar
  66. Michailidis L, Herty M, Ziegler M (2015) Kinetic part-feeding models for assembly lines in automotive industries. Math Models Methods Appl Sci 25(02):283–308. doi: 10.1142/S0218202515500104 MathSciNetCrossRefMATHGoogle Scholar
  67. Michler GH, Baltá-Calleja FJ (2012) Nano- and micromechanics of polymers: Structure modification and improvement of properties. Hanser, München, Cincinnati, OhioCrossRefGoogle Scholar
  68. Mueller S, Llewellin EW, Mader HM (2011) The effect of particle shape on suspension viscosity and implications for magmatic flows. Geophys Res Lett 38(13):n/a–n/a. doi: 10.1029/2011GL047167
  69. Murakami Y (2002) Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier, OxfordGoogle Scholar
  70. Murakami Y (2012) Material defects as the basis of fatigue design. Int J Fatigue 41:2–10. doi: 10.1016/j.ijfatigue.2011.12.001 CrossRefGoogle Scholar
  71. Nakamura K, Katayama K, Amano T (1973) Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition. J Appl Polym Sci 17(4):1031–1041. doi: 10.1002/app.1973.070170404 CrossRefGoogle Scholar
  72. Nieder T, Bickel P, Musiol F (2015) Development of renewable energy sources in Germany 2014. www.erneuerbare-energien.de
  73. Niemann G, Winter H (2003) Maschinenelemente: band 2: Getriebe allgemein, Zahnradgetriebe - Grundlagen, Stirnradgetriebe. Springer, BerlinGoogle Scholar
  74. Olsson E, Kreiss G (2005) A conservative level set method for two phase flow. J Comput Phys 210(1):225–246. doi: 10.1016/j.jcp.2005.04.007 MathSciNetCrossRefMATHGoogle Scholar
  75. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49. doi: 10.1016/0021-9991(88)90002-2 MathSciNetCrossRefMATHGoogle Scholar
  76. Rodrigues J (2005) Tecnologia mecânica: Tecnologia da deformação plástica. Escolar Editora, LisboaGoogle Scholar
  77. Röthlingshöfer T (2012) Auslegungsmethodik zur Optimierung des Einsatzverhaltens von Beveloidverzahnungen. Dissertation, RWTH AachenGoogle Scholar
  78. Rowan OK, Sisson RD (2009) Effect of alloy composition on carburizing performance of steel. J Phase Equilib Diffus 30(3):235–241. doi: 10.1007/s11669-009-9500-7 CrossRefGoogle Scholar
  79. Rudnizki J, Zeislmair B, Prahl U, Bleck W (2010) Prediction of abnormal grain growth during high temperature treatment. Comput Mater Sci 49(2):209–216. doi: 10.1016/j.commatsci.2010.04.015 CrossRefGoogle Scholar
  80. Sanchez-Palencia E (1983) Homogenization method for the study of composite media. In: Verhulst F (ed) Asymptotic analysis II, vol 985. Springer, Berlin, pp 192–214CrossRefGoogle Scholar
  81. Santillana MB (2013) Thermo-mechanical properties and cracking during solidification of thin slab cast steel. Delft University of Technology, DelftGoogle Scholar
  82. Sawatari C, Matsuo M (1986) Elastic modulus of isotactic polypropylene in the crystal chain direction as measured by X-ray diffraction. Macromolecules 19(10):2653–2656. doi: 10.1021/ma00164a036 CrossRefGoogle Scholar
  83. Schifferl H, Zamberger S, Jöller A (2012) Cost optimization by the modification of ally additions of heat-treatable engineering steels. HTM 67(4):251–256. doi: 10.3139/105.110160 CrossRefGoogle Scholar
  84. Schmidt I, Thies H (1989) Ingenieur-Werkstoffe 1(3/4):62–66Google Scholar
  85. Schmitz GJ, Benke S, Laschet G, Apel M, Prahl U, Fayek P, Konovalov S, Rudnizki J, Quade H, Freyberger S, Henke T, Bambach M, Rossiter EA, Jansen U, Eppelt U (2011) Towards integrative computational materials engineering of steel components. Prod Eng Res Devel 5(4):373–382. doi: 10.1007/s11740-011-0322-1 CrossRefGoogle Scholar
  86. Schmitz GJ, Prahl U (eds) (2012) Integrative computational materials engineering. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, GermanyGoogle Scholar
  87. Schmitz GJ et al (2015) Software solutions for ICME. JOM, 1–7Google Scholar
  88. Schmoeckel D, Hemyari D (1998) The realization of warm forging’s full potential. In: International conference on forging and related technology (ICFT’98), Birmingham, UK, 27–28 April 1998. Professional Engineering Publishing Limited, Bury St Edmonds, pp 295–310Google Scholar
  89. Schmoeckel D, Sheljaskow D (1994) Die Situation der Werkzeugwerkstoffe für die Halbwarmumformung in Deutschland, DarmstadtGoogle Scholar
  90. Schwerdtfeger K (1993) Metallurgie des Stranggießens. Verlag Stahleisen GmbHGoogle Scholar
  91. Scoonover TM, Arnson HL (1984) Hardenability of low- and medium-carbon Mn-Cr-Ni-Mo steels. J Heat Treat 3(3):183–192. doi: 10.1007/BF02833260 CrossRefGoogle Scholar
  92. Sellars CM, McTegart WJ (1966) On the mechanism of hot deformation. Acta Metall 14(9):1136–1138. doi: 10.1016/0001-6160(66)90207-0 CrossRefGoogle Scholar
  93. Spekowius M, Spina R, Hopmann C (2015) Mesoscale simulation of the solidification process in injection moulded parts. J Polym Eng. doi: 10.1515/polyeng-2014-0223 Google Scholar
  94. Spina R, Spekowius M, Dahlmann R, Hopmann C (2014) Analysis of polymer crystallization and residual stresses in injection molded parts. Int J Precis Eng Manuf 15(1):89–96. doi: 10.1007/s12541-013-0309-2 CrossRefGoogle Scholar
  95. Spina R, Spekowius M, Küsters K, Hopmann C (2013) Thermal simulation of polymer crystallization during post-filling. KEM 554–557:1699–1706. doi: 10.4028/www.scientific.net/KEM.554-557.1699 CrossRefGoogle Scholar
  96. Tartaglia JM, Eldis GT, Geissler JJ (1986) Hyperbolic secant method for predicting Jominy hardenability: an example using 0.2C-Ni-Cr-Mo steels. J Heat Treat 4(4):352–364. doi: 10.1007/BF02833091
  97. Tashiro K, Kobayashi M (1996) Molecular theoretical study of the intimate relationships between structure and mechanical properties of polymer crystals. Polymer 37(10):1775–1786. doi: 10.1016/0032-3861(96)87293-4 CrossRefGoogle Scholar
  98. Tashiro K, Kobayashi M, Tadokoro H (1992) Vibrational spectra and theoretical three-dimensional elastic constants of isotactic polypropylene crystal. An important role of anharmonic vibrations. Polym J 24(9):899–916. doi: 10.1295/polymj.24.899 CrossRefGoogle Scholar
  99. Tobie T (2001) Zur Grübchen- und Zahnfußtragfähigkeit einsatzgehärteter Zahnräder: Einflüsse aus Einsatzhärtungstiefe, Wärmebehandlung und Fertigung bei unterschiedlicher Baugröße. FZG, Lehrstuhl für Maschinenelemente, Forschungsstelle für Zahnräder und GetriebebauGoogle Scholar
  100. Tragfähigkeitsberechnung von Stirnrädern (DIN 3990)Google Scholar
  101. Tragfähigkeitsberechnung von Kegelrädern ohne Achsversatz (DIN 3991)Google Scholar
  102. Weibull W (1959) Zur Abhängigkeit der Festigkeit von der Probengröße. Ing Arch 28(1):360–362. doi: 10.1007/BF00536130 CrossRefMATHGoogle Scholar
  103. Wienke S, Spekowius M, Dammer A, Da Mey, Hopmann C, Muller MS (2014) Towards an accurate simulation of the crystallisation process in injection moulded plastic components by hybrid parallelisation. Int J High Perform Comput Appl 28(3):356–367. doi: 10.1177/1094342013511837 CrossRefGoogle Scholar
  104. Wirth C (2009) Zur Tragfähigkeit von Kegelrad- und Hypoidgetrieben. Berichte aus dem Maschinenbau, vol 164. Shaker, AachenGoogle Scholar
  105. Zheng R, Tanner RI, Wo DL, Fan X, Hadinata C, Costa FS, Kennedy PK, Zhu P, Edward G (2010) Modeling of flow-induced crystallization of colored polypropylene in injection molding. Korea-Aust Rheol J 22(3):151–162Google Scholar
  106. Zuber D (2008) Fusstragfähigkeit einsatzgehärteter Zahnräder unter Berücksichtigung lokaler Materialeigenschaften. Berichte aus der Produktionstechnik, vol 12. Shaker, AachenGoogle Scholar
  107. Zuidema H, Peters GWM, Meijer HEH (2001) Development and validation of a recoverable strain-based model for flow-induced crystallization of polymers. Macromol Theory Simul 10(5):447–460. doi: 10.1002/1521-3919(20010601)10:5<447:AID-MATS447>3.0.CO;2-C CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Wolfgang Bleck
    • 1
  • Christian Brecher
    • 2
  • Michael Herty
    • 3
  • Gerhard Hirt
    • 4
  • Christian Hopmann
    • 5
  • Fritz Klocke
    • 2
  • Nikolai Borchmann
    • 5
  • Jens Dierdorf
    • 4
  • Hamidreza Farivar
    • 1
  • Patrick Fayek
    • 1
  • Axel Häck
    • 3
  • Viktor Kripak
    • 1
  • Markus Krömer
    • 2
  • Gottfried Laschet
    • 6
  • Ulrich Prahl
    • 1
  • Markus Rüngeler
    • 2
  • Georg J. Schmitz
    • 6
  • Marcel Spekowius
    • 5
  • Phillip Springer
    • 1
  • Andre M. Teixeira
    • 2
  1. 1.Department of Ferrous Metallurgy (IEHK)RWTH Aachen UniversityAachenGermany
  2. 2.Laboratory for Machine Tools and Production Engineering (WZL)RWTH Aachen UniversityAachenGermany
  3. 3.Institute for Geometry and Applied Mathematics (IGPM)RWTH Aachen UniversityAachenGermany
  4. 4.Institute of Metal Forming (IBF)RWTH Aachen UniversityAachenGermany
  5. 5.Institute of Plastics Processing (IKV)RWTH Aachen UniversityAachenGermany
  6. 6.Access e.V.AachenGermany

Personalised recommendations