Advertisement

Mold-Based Production Systems

  • Andreas Bührig-Polaczek
  • Marek Behr
  • Christian Hopmann
  • Günther Schuh
  • Abassin Aryobsei
  • Stefanie Elgeti
  • Markus Frings
  • Jan Kantelberg
  • Michael Riesener
  • Frank Schmidt
  • Roland Siegbert
  • Uwe Vroomen
  • Christian Windeck
  • Nafi Yesildag
Chapter

Abstract

Mold-based production systems are vastly common in mass production processes, due to the high investment costs of production equipment. In order to address the challenge of a strong tendency towards individualized customer demands, companies in high-wage countries are forced to react towards these changes. This chapter describes recent advances in the field of individualized production for mold-based production systems regarding plastics profile extrusion and high-pressure die casting. A holistic methodology for an integrated product and mold design is presented based on the principles of simultaneous engineering. In addition, recent advances in the field of numerical optimization are shown. The advances in numerical optimization will be carried out based on the processes mentioned above. The monitoring and simulation of the viscoelastic swell will be shown for plastics profile extrusion. For the field of high-pressure die casting the strategy to optimize the entire process will be outlined and current experimental results shown. For both application cases the potential benefit of additive manufacturing technologies—such as Selective Laser Melting (SLM)—will be evaluated and validated inasmuch as possible.

Keywords

Additive Manufacturing Product Family Selective Laser MeltingSelective Laser Melting Temperature Control System Shot Sleeve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aryobsei A (2015) Integrierte Produkt- und Werkzeugentwicklung. Apprimus-Verlag, AachenGoogle Scholar
  2. Behr M, Arora D, Coronado O, Pasquali M (2005) GLS-type finite element methods for viscoelastic fluid flow simulation. In: Proceedings of the third MIT conference on computational fluid and solid mechanics, Massachusetts Institute of Technology, Cambridge, USA, pp 135-308Google Scholar
  3. Behr M, Tezduyar TE (1994) Finite element solution strategies for large-scale flow simulations. Comput Methods Appl Mech Eng 112(1–4):3–24. doi: 10.1016/0045-7825(94)90016-7 MathSciNetCrossRefzbMATHGoogle Scholar
  4. Boos W (2008) Methodik zur Gestaltung und Bewertung von modularen Werkzeugen. Produktionssystematik, vol 1. Apprimus-Verlag, AachenGoogle Scholar
  5. Brecher C (2011) Integrative Produktionstechnik für Hochlohnländer. Springer, HeidelbergCrossRefGoogle Scholar
  6. Brecher C (2012) Integrative production technology for high-wage countries. Springer, BerlinCrossRefGoogle Scholar
  7. Brinkmann T (ed) (2011) Handbuch Produktentwicklung mit Kunststoffen. Hanser, MünchenGoogle Scholar
  8. Brunhuber E (1991) Praxis der Druckgußfertigung. 4. neubearbeitete und erweiterte Auflage edn. Schiele & Schön, BerlinGoogle Scholar
  9. Bullinger H-J (ed) (1992) Marktgerechte Produktentwicklung: IAO-Forum, 2. May 1992. vol 28. Springer, BerlinGoogle Scholar
  10. Burghardt M (2002) Projektmanagement: Leitfaden für die Planung, Überwachung und Steuerung von Entwicklungsprojekten, 6th edn. Publicis Corp, Publ, ErlangenGoogle Scholar
  11. Carneiro O, Nóbrega J, Oliveira P, Pinho F (2003) Flow balancing in extrusion dies for thermoplastic profiles: part II: influence of the design strategy. Int Polym Proc 18(3):307–312CrossRefGoogle Scholar
  12. Carneiro OS, Nobrega JM, Pinho FT, Oliveira PJ (2001) Computer aided rheological design of extrusion dies for profiles. J Mater Process Technol 114(1):75–86. doi: 10.1016/S0924-0136(01)00574-X CrossRefGoogle Scholar
  13. Casalino G, Campanelli SL, Contuzzi N, Ludovico AD (2015) Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Opt Laser Technol 65:151–158. doi: 10.1016/j.optlastec.2014.07.021 CrossRefGoogle Scholar
  14. Cottrell JA, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, HobokenCrossRefGoogle Scholar
  15. Dul J, Lesko Z, Juhasz B (2013) Effect of the technological parameters on the thermal conditions of die-casting tool. In: Materials science at University of Miskolc: special topic volume with invited peer reviewed papers only, vol 752. Materials Science Forum. Trans Tech Publications, Zürich, pp 183–192Google Scholar
  16. Ehrlenspiel K (2009) Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 4th edn. Hanser, MünchenCrossRefGoogle Scholar
  17. Ehrlenspiel K, Kiewert A, Lindemann U (2007) Kostengünstig entwickeln und konstruieren: Kostenmanagement bei der integrierten Produktentwicklung. VDI, 6. überarbeitete und korrigierte Auflage edn. Springer, Berlin, New YorkGoogle Scholar
  18. Eitelwein O, Weber J (2011) Unternehmenserfolg durch Modularisierung von Produkten, Prozessen und Supply Chains: WHU Benchmarking-Studie Modularisierung. Books on Demand, NorderstedtGoogle Scholar
  19. Elgeti S, Probst M, Windeck C, Behr M, Michaeli W, Hopmann C (2012) Numerical shape optimization as an approach to extrusion die design. Finite Elem Anal Des 61:35–43. doi: 10.1016/j.finel.2012.06.008 MathSciNetCrossRefGoogle Scholar
  20. Esparza CE, Guerrero-Mata MP, Ríos-Mercado RZ (2006) Optimal design of gating systems by gradient search methods. Comput Mater Sci 36(4):457–467. doi: 10.1016/j.commatsci.2005.05.009 CrossRefGoogle Scholar
  21. Ettinger HJ, Pittman JFT, Sienz J (2013) Optimization-driven design of dies for profile extrusion: parameterization, strategy, and performance. Polymer Eng Sci Greenwich 53(1):189–203. doi: 10.1002/pen.23228 CrossRefGoogle Scholar
  22. Ettinger HJ, Sienz J, Pittman JFT, Polynkin A (2004) Parameterization and optimization strategies for the automated design of uPVC profile extrusion dies. Struct Multi Optim 28(2–3):180–194. doi: 10.1007/s00158-004-0440-x Google Scholar
  23. Eversheim W, Bochtler W, Laufenberg L (eds) (1995) Simultaneous engineering: Erfahrungen aus der Industrie für die Industrie. Springer, Berlin, New YorkGoogle Scholar
  24. Eversheim W, Klocke F (1998) Werkzeugbau mit Zukunft: Strategie und Technologie. VDI-Buch. Springer, BerlinGoogle Scholar
  25. Faura F, López J, Hernández J (2001) On the optimum plunger acceleration law in the slow shot phase of pressure die casting machines. Int J Mach Tools Manuf 41(2):173–191. doi: 10.1016/S0890-6955(00)00079-1 CrossRefGoogle Scholar
  26. Fixson SK (2007) Modularity and commonality research: past developments and future opportunities. Concurr Eng Res Appl 15(2):85–111. doi: 10.1177/1063293x07078935 CrossRefGoogle Scholar
  27. Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies 3D printing, rapid prototyping, and direct digital manufacturing, 2nd edn. Springer, New YorkGoogle Scholar
  28. Hahn I, Sturm JC (2012) Automatische Optimierung in der Gießprozesssimulation. Giesserei 99(4):56–67Google Scholar
  29. Hahn I, Sturm JC (2015) Von der Simulation zur gießtechnischen Optimierung. Giesserei 102(6):86–100Google Scholar
  30. Hansen PN, Flender E, Sturm JC (2009) Casting process simulation - from the idea 30 years ago to reality today. Giessereiforschung 61(4):12–29Google Scholar
  31. Hilbinger M, Köpf J, Rübner M, Singer R (2011) Computational optimisation of plunger movement during slow shot phase in high pressure die casting. Int Foundry Res—Giessereiforschung 3:44–50Google Scholar
  32. Hinckeldeyn J, Dekkers R, Altfeld N, Kreutzfeldt J (2010) Bottleneck-based synchronisation of engineering and manufacturing. HAW-Hamburg, HamburgGoogle Scholar
  33. Hofer P, Kaschnitz E, Schumacher P (2012) Simulation of distortion and residual stress in high pressure die casting modelling and experiments. In: MCWASP, modeling of casting, welding and advanced solidification processes, 13, vol 33. IOP conference series: materials science and engineering (Online), pp 012055/012051–012055/012058Google Scholar
  34. Hopmann C, Yesildag N, Bremen S, Wissenbach K, Merkt S (2015) Surface quality of profile extrusion dies manufactured by selective laser melting. RTejournal - Forum für Rapid Technologie (Internet) 12:0Google Scholar
  35. Hu BH, Tong KK, Niu XP, Pinwill I (2000) Design and optimisation of runner and gating systems for the die casting of thin-walled magnesium telecommunication parts through numerical simulation. J Mater Process Technol 105(1/2):128–133Google Scholar
  36. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119(1):73–94CrossRefzbMATHGoogle Scholar
  37. Johnson SG (2014) NLopt nonlinear-optimization package. http://ab-initio.mit.edu/nlopt
  38. Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the Lipschitz constant. J Optim Theory Appl 79(1):157–181MathSciNetCrossRefzbMATHGoogle Scholar
  39. Kaelo P, Ali MM (2006) Some variants of the controlled random search algorithm for global optimization. J Optim Theory Appl 130(2):253–264MathSciNetCrossRefzbMATHGoogle Scholar
  40. Kallien LH, Leis W (2012) Jahresübersicht Druckgießen (1. Folge). Giesserei 99(11):56–67Google Scholar
  41. Kinkel S (2005) Anforderungen an die Fertigungstechnik von morgen: wie verändern sich Variantenzahlen, Losgrößen, Materialeinsatz, Genauigkeitsanforderungen und Produktlebenszyklen tatsächlich? vol 37. Mitteilungen aus der Produktionsinnovationserhebung. ISI, KarlsruheGoogle Scholar
  42. Kong LX, She FH, Gao WM, Nahavandi S, Hodgson PD (2008) Integrated optimization system for high pressure die casting processes. J Mater Process Technol 201(1–3):629–634. doi: 10.1016/j.jmatprotec.2007.11.250 CrossRefGoogle Scholar
  43. Laukli H, Graciotti A, Lohne O, Gjestland H, Sannes S (2002) The effect of solidification of metal prior to injection in HPDC on the grain size distribution in a complex die casting. High Pressure Die Casting of Aluminium and Magnesium Alloys-Grain Structure and Segregation Characteristics 45Google Scholar
  44. Lessenich-Henkys VF (1991) Aufbau einer firmenspezifischen, wissensbasierten Konstruktionssoftware für Spritzgussteile: Möglichkeiten und Grenzen. AachenGoogle Scholar
  45. López J, Faura F, Hernández J, Gómez P (2003) On the critical plunger speed and three-dimensional effects in high-pressure die casting injection chambers. J Manuf Sci Eng 125(3):529–537. doi: 10.1115/1.1580525 CrossRefGoogle Scholar
  46. Lotfi A (2005) Optimal shape design for metal forming problems by the finite element method. PAMM 5(1):429–430. doi: 10.1002/pamm.200510191 CrossRefGoogle Scholar
  47. Luo Z-Q, Pang J-S, Ralph D (1996) Mathematical programs with equilibrium constraints. Cambridge University Press, CambidgeCrossRefzbMATHGoogle Scholar
  48. Meiners W, Bremen S, Diatlov A (2012) Selective laser melting—additive manufacturing for series production of the future? Laser Tech J 9(2):33–38. doi: 10.1002/latj.201290018 CrossRefGoogle Scholar
  49. Michaeli W (2003) Extrusion dies for plastics and rubber. Carl Hanser Verlag, München. doi: 10.3139/9783446401815
  50. Michaeli W, Behr M, Nicolai M, Probst M, Elgeti S, Fink B, Windeck C (2009) Towards shape optimization of extrusion dies using finite elements. J Plastics Technol 5:411–427Google Scholar
  51. Michaeli W, Pfannschmidt O, Franz A, Vogt N (2001) Entwicklungen vorausberechnen, Prozeßsimulation in der Praxis – eine Standortbestimmung. Kunststoffe 7:32–39Google Scholar
  52. Michaeli W, Schmitz T, Baranowski T, Fink B (2007) Automatic optimisation of extrusion dies. In: PPS, annual meeting of the Polymer Processing Society, 23. pp 1–4Google Scholar
  53. Mikkola JH, Gassmann O (2003) Managing modularity of product architectures: toward an integrated theory. IEEE Trans Eng Manage 50(2):204–218. doi: 10.1109/TEM.2003.810826 CrossRefGoogle Scholar
  54. Morton-Jones DH (1989) Polymer processing. Chapman and Hall, LondonCrossRefGoogle Scholar
  55. COMPULAST International Inc. (2010) Mitteilung zur Profilextrusion der COMPULAST International Inc. http://www.compulast.com/ProfileDieProductDescription.shtml. Accessed 17 Nov 2010
  56. Pixargus GmbH. (2015a) Inline profile measurement for all extrusion products. Pixargus GmbH. http://www.pixargus.de/assets/pdf/PCD-X360%20brochure.pdf. Accessed 19 Oct 2015
  57. Rescale. (2015b) rescale.com. http://www.rescale.com/. Accessed 14 Oct 2015
  58. Nagahanumaiah Mukherjee NP, Ravi B (2005) An integrated framework for die and mold cost estimation using design features and tooling parameters. Int J Adv Manuf Technol 26(9–10):1138–1149. doi: 10.1007/s00170-004-2084-9 CrossRefGoogle Scholar
  59. Nóbrega JM, Carneiro OS, Oliveira PJ, Pinho FT (2003) Flow balancing in extrusion dies for thermoplastic profiles: part I: automatic design. Int Polym Proc 18(3):298–306CrossRefGoogle Scholar
  60. Nobrega JM, Carneiro OS, Pinho FT, Oliveira PJ (2004) Flow balancing in extrusion dies for thermoplastic profiles. Pt. 3. Experimental assessment. Int Polym Proc 19(3):225–235CrossRefGoogle Scholar
  61. Nocedal J, Wright S (2006) Numerical optimization. Springer Science & Business Media, New York. doi: 10.1007/978-0-387-40065-5
  62. Nogowizin B (2003) Technological possibilities of die casting machines with horizontal cold-chamber. Druckguss-Praxis 2(1):25–33Google Scholar
  63. Nogowizin B (2011) Theorie und Praxis des Druckgusses. Schiele & Schön, BerlinGoogle Scholar
  64. Pahl G, Beitz W (2006) Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung. Methoden und Anwendung. 7. edited and extended edition. Springer, BerlinGoogle Scholar
  65. Pauli L (2011) Simulating die swell in the context of profile extrusionGoogle Scholar
  66. Pfeifer T (2001) Qualitätsmanagement: Strategien, Methoden, Techniken. 3. edited edition edn. Hanser, München; WienGoogle Scholar
  67. Piegl L, Tiller W (2012) The NURBS book, 2nd edn. Springer, BerlinzbMATHGoogle Scholar
  68. Porter ME, Brandt V, Schwoerer TC (2013) Wettbewerbsstrategie: Methoden zur Analyse von Branchen und Konkurrenten, 12th edn. Campus Verlag, FrankfurtGoogle Scholar
  69. Powell MJD (2007) A view of algorithms for optimization without derivatives. Department of Applied Mathematics and Theoretical Physics, CambridgeGoogle Scholar
  70. Powell MJD (2009) The BOBYQA algorithm for bound constrained optimization without derivatives. Department of Applied Mathematics and Theoretical Physics, CambridgeGoogle Scholar
  71. Pries H, Liluashvili S, Dilger K (2003) Brandrißentstehung an Druckgießformen—origin of thermal fatigue cracks on dies. Druckguss-Praxis 2(3):135–140Google Scholar
  72. Queudeville Y, Ivanov T, Nußbaum C, Vroomen U, Bührig-Polaczek A (2009) Decision and design methodologies for the lay-out of modular dies for high-pressure-die-cast-processes. In: Materials Science Forum, 2009. Materials Science Forum. RWTH Aachen, DE, pp 345–348Google Scholar
  73. Queudeville Y, Vroomen U, Bührig-Polaczek A (2014) Modularization methodology for high pressure die casting dies. Int J Adv Manuf Technol 71(9–12):1677–1686. doi: 10.1007/s00170-013-5582-9 CrossRefGoogle Scholar
  74. Rittstieg M (2012) Methodik zur Prozesssynchronisierung in der Auftragsabwicklung des industriellen Werkzeugbaus. Ergebnisse aus der Produktionstechnik, vol 2012, 18, 1. edn. Apprimus-Verlag, AachenGoogle Scholar
  75. Schlick CM (2009) Industrial Engineering and ergonomics: visions, concepts, methods and tools festschrift in honor of Professor Holger Luczak. Springer, BerlinCrossRefGoogle Scholar
  76. Schuh G (2009) Toolmaking for the future: a global study of today’s situation and future trends in the tooling industry. Laboratory for Machine Tools and Production Engineering of RWTH Aachen, AachenGoogle Scholar
  77. Schuh G (2014) Produktkomplexität managen: Strategien - Methoden - Tools. Carl Hanser Verlag, MunichGoogle Scholar
  78. Schuh G, Arnoscht J, Bohl A, Nußbaum C (2011) Integrative assessment and configuration of production systems. CIRP Ann Manuf Technol 1:457–460Google Scholar
  79. Siegbert R, Elgeti S, Behr M, Kurth K, Windeck C, Hopmann C (2013) Design criteria in numerical design of profile extrusion dies. In: The Current state-of-the-art on material forming, ESAFORM, international ESAFORM conference on material forming, 16, vol 554–557. Key Engineering Materials. Trans Tech Publications, Zurich, pp 794–800. doi: 10.4028/www.scientific.net/KEM.554-557.794
  80. Siegbert R, Kitschke J, Djelassi H, Behr M, Elgeti S (2014) Comparing optimization algorithms for shape optimization of extrusion dies. PAMM 14(1):789–794. doi: 10.1002/pamm.201410377 CrossRefGoogle Scholar
  81. Siegbert R, Yesildag N, Frings M, Schmidt F, Elgeti S, Sauerland H, Behr M, Windeck C, Hopmann C, Queudeville Y, Vroomen U, Bührig-Polaczek A (2015) Individualized production in die-based manufacturing processes using numerical optimization. Int J Adv Manuf Technol 1–8. doi: 10.1007/s00170-015-7003-8
  82. Sienz J, Bulman S, Pittman J (2001) Optimisation strategies for extrusion die design. In: 4th international ESAFORM conference on material forming, 2001, pp 275–278Google Scholar
  83. Specht G, Beckmann C, Amelingmeyer J (2002) F&E-Management: Kompetenz im Innovationsmanagement. UTB für Wissenschaft, 2 edn. Schäffer-Poeschel, StuttgartGoogle Scholar
  84. Sturm JC (2003) Optimierung von Gießtechnik und Gussteilen. In: Abschlusskonferenz zum BMBF-Projekt ELAnO, Simulation in der Produkt- und Prozessentwicklung, 2003, vol Dokumenttyp: Konferenzbeitrag. Fraunhofer IRB Verlag, Stuttgart, pp 39–46Google Scholar
  85. Sun Z, Hu H, Chen X (2008) Numerical optimization of gating system parameters for a magnesium alloy casting with multiple performance characteristics. J Mater Process Technol 199(1–3):256–264. doi: 10.1016/j.jmatprotec.2007.08.036 CrossRefGoogle Scholar
  86. Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146–159. doi: 10.1006/jcph.1994.1155 CrossRefzbMATHGoogle Scholar
  87. Szarvasy I, Sienz J, Pittman J, Hinton E (2000) Computer aided optimisation of profile extrusion dies: definition and assessment of the objective function. Int Polym Proc 15(1):28–39CrossRefGoogle Scholar
  88. Thebeau RE (2001) Knowledge management of system interfaces and interactions from product development processes. Massachusetts Institute of Technology, CambridgeGoogle Scholar
  89. Thoma C, Heid R, Burger J, Dilger K, Volk W (2014) Numerical topology optimization of gating systems for high-pressure die casting structural components. Inte Foundry Res—Giessereiforschung 66(3):28–34Google Scholar
  90. Tszeng TC, Chu YL (1994) A Study of wave formation in shot sleeve of a die casting machine. J Manuf Sci Eng 116(2):175–182. doi: 10.1115/1.2901928 Google Scholar
  91. Vollrath K (2002) Fit for function. Instandhaltung von Extrusionswerkzeugen. Plastverarbeiter 53(2):78–79Google Scholar
  92. Wallace JF, Schwam D, Feng S (2004) Beurteilung von Kühlvorrichtungen von Druckgussformen. Druckguss-Praxis 3:141–146Google Scholar
  93. Welge MK, Al-Laham A (2003) Strategisches Management: Grundlagen - Prozess - Implementierung. 4. edited edition edn. Gabler Verlag, WiesbadenGoogle Scholar
  94. Yilmaz O, Gunes H, Kirkkopru K (2014) Optimization of a profile extrusion die for flow balance. Fibers Polymers 15(4):753–761. doi: 10.1007/s12221-014-0753-3 CrossRefGoogle Scholar
  95. Yoshimura M (1993) Concurrent optimization of product design and manufacturing. In: Parsaei HR, Sullivan WG (eds) Concurrent engineering techniques and applications. Springer Science + Business Media, Dordrecht, pp 159–183. doi: 10.1007/978-1-4615-3062-6_9
  96. Zolfaghari A, Behravesh AH, Shakouri E, Soury E (2009) An innovative method of die design and evaluation of flow balance for thermoplastics extrusion profiles. Polymer Eng Sci Greenwich 49(9):1793–1799. doi: 10.1002/pen.21421 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andreas Bührig-Polaczek
    • 1
  • Marek Behr
    • 2
  • Christian Hopmann
    • 3
  • Günther Schuh
    • 4
  • Abassin Aryobsei
    • 4
  • Stefanie Elgeti
    • 2
  • Markus Frings
    • 2
  • Jan Kantelberg
    • 4
  • Michael Riesener
    • 4
  • Frank Schmidt
    • 1
  • Roland Siegbert
    • 2
  • Uwe Vroomen
    • 1
  • Christian Windeck
    • 3
  • Nafi Yesildag
    • 3
  1. 1.Foundry Institute (GI)RWTH Aachen UniversityAachenGermany
  2. 2.Chair for Computational Analysis of Technical Systems (CATS)RWTH Aachen UniversityAachenGermany
  3. 3.Institute of Plastics Processing (IKV)RWTH Aachen UniversityAachenGermany
  4. 4.Laboratory for Machine Tools and Production Engineering (WZL)RWTH Aachen UniversityAachenGermany

Personalised recommendations