Advertisement

Direct, Mold-Less Production Systems

  • Reinhart Poprawe
  • Wolfgang Bleck
  • Frank Thomas Piller
  • Günther Schuh
  • Sebastian Barg
  • Arne Bohl
  • Sebastian Bremen
  • Jan Bültmann
  • Christian Hinke
  • Ruth Jiang
  • Robin Kleer
  • Simon Merkt
  • Ulrich Prahl
  • Michael Riesener
  • Johannes Schrage
  • Christian Weller
  • Stephan Ziegler
Chapter

Abstract

Additive Manufacturing (AM) technologies in general—and in particular, Selective Laser Melting (SLM)—are characterized by a fundamentally different relationship with respect to costs, lot size, and product complexity compared to conventional manufacturing processes. There is no increase of costs for small lot sizes (in contrast to mold-based technologies) and none for shape complexity either (in contrast to subtractive technologies). Thus, only the holistic development of a direct, mold-less production system that takes all relevant interdependencies along the product creation chain into account provides the full economic, ecologic and social benefits of AM technologies in future production. The following six subjects of the product creation chain were examined: (i) New business models and customer willingness to pay for AM parts are revealed. (ii) The Product Production System (PPS) was totally revised regarding the adoption of SLM technology into conventional manufacturing environment. (iii) The SLM manufacturing costs were examined regarding different machine configurations. (iv) A high-power SLM process was developed for enhancing the process productivity. (v) High manganese steel was qualified for the SLM process. (vi) Finally, two lattice structure types and a design methodology for customer parts were developed.

Keywords

Additive Manufacture Selective Laser Melting Mass Customization Product Architecture Scanning Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson C (2008) The long tail: Why the future of business is selling less of more, 1, paperback edn. Hyperion, New York, NYGoogle Scholar
  2. Ashby M (2006) The properties of foams and lattices. Philos Trans R Soc A Math Phys Eng Sci 364(1838):15–30. doi: 10.1098/rsta.2005.1678 MathSciNetCrossRefGoogle Scholar
  3. ASTM International (2015) Standard terminology for additive manufacturing technologiesGoogle Scholar
  4. Baumers M (2012) Economic aspects of additive manufacturing: benefits, costs and energy consumptionGoogle Scholar
  5. Baumers M, Dickens P, Tuck C, Hague R (2016) The cost of additive manufacturing: Machine productivity, economies of scale and technology-push. Technol Forecast Soc Chang 102:193–201CrossRefGoogle Scholar
  6. Bechthold L, Fischer V, Greul A, Hainzlmaier A, Hugenroth D, Ivanova L, Kroth K, Römer B, Sikorska E, Sitzmann V (2015) 3D printing—a qualitative assessment of applications, recent trends and the technology’s future potential: Studien zum deutschen innovations system. EFI, BerlinGoogle Scholar
  7. Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55(2):155–162. doi: 10.1016/j.bushor.2011.11.003 MathSciNetCrossRefGoogle Scholar
  8. Bogers M, Hadar R, Bilberg A (2016) Additive manufacturing for consumer-centric business models: Implications for supply chains in consumer goods manufacturing. Technol Forecast Soc Chang 102:225–239. doi: 10.1016/j.techfore.2015.07.024 CrossRefGoogle Scholar
  9. Bohl A (2015) Kennlinien der Produkt- und Produktionskomplexität. Ergebnisse aus der Produktionstechnik, Band 8/2015. Apprimus Verlag, AachenGoogle Scholar
  10. Brecher C (ed) (2011) Integrative Produktionstechnik für Hochlohnländer. Springer, Heidelberg (u.a.)Google Scholar
  11. Brecher C (ed) (2012) Integrative production technology for high-wage countries. Springer Berlin Heidelberg, Berlin, HeidelbergGoogle Scholar
  12. Bremen S, Buchbinder D, Meiners W, Wissenbach K (2011) Mit Selective Laser Melting auf dem Weg zur Serienproduktion? LTJ 8(6):24–28. doi: 10.1002/latj.201190072 CrossRefGoogle Scholar
  13. Bremen S, Meiners W, Diatlov A (2012) Selective laser melting: a manufacturing technology for the future? LTJ 9(2):33–38. doi: 10.1002/latj.201290018 CrossRefGoogle Scholar
  14. Brynjolfsson E, Hu Y, Simester D (2011) Goodbye pareto principle, hello long tail: the effect of search costs on the concentration of product sales. Manag Sci 57(8):1373–1386. doi: 10.1287/mnsc.1110.1371 CrossRefGoogle Scholar
  15. Buchbinder D, Schilling G, Meiners W, Pirch N, Wissenbach K (2011) Untersuchung zur Reduzierung des Verzugs durch Vorwärmung bei der Herstellung von Aluminiumbauteilen mittels SLM. RTejournal—Forum für Rapid Technologie. Online J 8:15Google Scholar
  16. Bültmann J, Merkt S, Hammer C, Hinke C, Prahl U (2015) Scalability of the mechanical properties of selective laser melting produced micro-struts. J Laser Appl 27(S2):S29206. doi: 10.2351/1.4906392 CrossRefGoogle Scholar
  17. Casalino G, Campanelli SL, Contuzzi N, Ludovico AD (2015) Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Opt Laser Technol 65:151–158. doi: 10.1016/j.optlastec.2014.07.021 CrossRefGoogle Scholar
  18. Coelho PS, Henseler J (2012) Creating customer loyalty through service customization. Eur J Mark 46(3/4):331–356. doi: 10.1108/03090561211202503 CrossRefGoogle Scholar
  19. Concept Laser GmbH (2015) Laser melting metal systems. http://www.concept-laser.de/en/industry/automotive/machines.html. Accessed 19 May 2016
  20. DIN (2005) Zuverlässigkeitsmanagement - Teil 3-3: Anwendungsleitfaden – Lebenszykluskosten (60300-3-3)Google Scholar
  21. DIN (2008) Prüfung von metallischen Werkstoffen - Druckversuch an metallischen zellularen Werkstoffen DIN 50134 (50134)Google Scholar
  22. Eibl F (2014) Annual report 2014 Fraunhofer institute for laser technology 2014: SLM exposure design for easy scaling of productivity and building space, AachenGoogle Scholar
  23. Eisenhut M, Langefeld B (2013) Additive manufacturing—a game changer for the manufacturing industry?. Roland Berger Strategy Consultants, MünchenGoogle Scholar
  24. Elberse A (2008) Should you invest in the long tail? Harvard Bus Rev 86(7/8):88–96Google Scholar
  25. EOS GmbH (2015) EOS M 400: product information sheet. http://www.eos.info/m-solutions/download/system_datasheet_EOS_M_400.pdf. Accessed 19 May 2016
  26. Forbes (2013) Full text: president Obama’s 2013 state of the union address. http://www.forbes.com/sites/beltway/2013/02/12/full-text-president-obamas-2013-state-of-the-union-address/. Accessed 29 Oct 2015
  27. Franke N, Keinz P, Steger CJ (2009) Testing the value of customization: when do customers really prefer products tailored to their preferences? J Mark 73(5):103–121. doi: 10.1509/jmkg.73.5.103 CrossRefGoogle Scholar
  28. Franke N, Piller F (2004) Value creation by toolkits for user innovation and design: the case of the watch market. J Prod Innov Manage 21:401–415CrossRefGoogle Scholar
  29. Franke N, Schreier M (2010) Why customers value self-designed products: the importance of process effort and enjoyment*. J Prod Innov Manage 27(7):1020–1031. doi: 10.1111/j.1540-5885.2010.00768.x CrossRefGoogle Scholar
  30. Franke N, Schreier M, Kaiser U (2010) The “i designed it myself” effect in mass customization. Manage Sci 56(1):125–140. doi: 10.1287/mnsc.1090.1077 CrossRefGoogle Scholar
  31. Gausemeier J (2013) Thinking ahead the future of additive manufacturing—innovation roadmapping of required advancements: Studie, PaderbornGoogle Scholar
  32. Gebhardt A (2012) Understanding additive manufacturing: rapid prototyping, rapid tooling, rapid manufacturing. Hanser, MunichGoogle Scholar
  33. Gebhardt A (2013) Generative Fertigungsverfahren: additive manufacturing und 3D Drucken für prototyping—tooling—Produktion. Carl Hanser Verlag GmbH & Co, KG, MünchenCrossRefGoogle Scholar
  34. Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, 2nd edn. Springer, New York, NYGoogle Scholar
  35. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties, 2nd ed, 1st pbk. ed with corr. Cambridge solid state science series. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  36. Gobrecht J (2009) Werkstofftechnik - Metalle, 3., überarb. Aufl. Oldenbourg Lehrbücher für Ingenieure. Oldenbourg, R, MünchenGoogle Scholar
  37. Gordon ME, McKeage K, Fox MA (1998) Relationship marketing effectiveness: the role of involvement. Psychol Mark 15(5):443–459. doi: 10.1002/(SICI)1520-6793(199808)15:5<443:AID-MAR3>3.0.CO;2-7 CrossRefGoogle Scholar
  38. Grässel O, Frommeyer G (1998) Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels. Mater Sci Technol 14(12):1213–1217. doi: 10.1179/mst.1998.14.12.1213 CrossRefGoogle Scholar
  39. Guan K, Wang Z, Gao M, Li X, Zeng X (2013) Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel. Mater Des 50:581–586. doi: 10.1016/j.matdes.2013.03.056 CrossRefGoogle Scholar
  40. Gümrük R, Mines R (2013) Compressive behaviour of stainless steel micro-lattice structures. Int J Mech Sci 68:125–139. doi: 10.1016/j.ijmecsci.2013.01.006 CrossRefGoogle Scholar
  41. Haase C, Ingendahl T, Güvenç O, Bambach M, Bleck W, Molodov DA, Barrales-Mora LA (2016) On the applicability of recovery-annealed twinning-induced plasticity steels: potential and limitations. Mater Sci Eng A 649:74–84. doi: 10.1016/j.msea.2015.09.096 CrossRefGoogle Scholar
  42. Hao L, Raymont D, Yan C, Hussein A, Young P (2012) Design and additive manufacturing of cellular lattice structures. In: Bártolo P (ed) Innovative developments in virtual and physical prototyping: proceedings of the 5th international conference on advanced research and rapid prototyping, Leiria, Portugal, 28 September-1 October, 2011. CRC Press, Boca Raton, pp 249–254Google Scholar
  43. Holzweissig MJ, Taube A, Brenne F, Schaper M, Niendorf T (2015) Microstructural characterization and mechanical performance of hot work tool steel processed by selective laser melting. Metall and Materi Trans B 46(2):545–549. doi: 10.1007/s11663-014-0267-9 CrossRefGoogle Scholar
  44. Hopkinson N, Hague RJM, Dickens PM (2006) Rapid manufacturing: an industrial revolution for the digital age. John Wiley, Chichester, EnglandGoogle Scholar
  45. Huffman C, Kahn BE (1998) Variety for sale: mass customization or mass confusion? J Retail 74(4):491–513. doi: 10.1016/S0022-4359(99)80105-5 CrossRefGoogle Scholar
  46. Jägle EA, Choi P-P, van Humbeeck J, Raabe D (2014) Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. J Mater Res 29(17):2072–2079. doi: 10.1557/jmr.2014.204 CrossRefGoogle Scholar
  47. Kaplan RS, Cooper R (1999) Prozesskostenrechnung als Managementinstrument. Campus-Verl, Frankfurt/Main, New YorkGoogle Scholar
  48. Kieviet A (2015) Implications of additive manufacturing on complexity management within supply chains in a production environment. Dissertation, University of LouisvilleGoogle Scholar
  49. Kleer R, Piller F (2013) Welfare effects of a radical process innovation: benefits of local production by users via 3D printing. Presented at the 73rd annual meeting of the academy of management, Orlando, FLGoogle Scholar
  50. Lampel J, Mintzberg H (1996) Customizing customization. Sloan Manag Rev 38(1):21–30Google Scholar
  51. Leary M, Merli L, Torti F, Mazur M, Brandt M (2014) Optimal topology for additive manufacture: a method for enabling additive manufacture of support-free optimal structures. Mater Des 63:678–690. doi: 10.1016/j.matdes.2014.06.015 CrossRefGoogle Scholar
  52. Lindemann U, Reichwald R, Zäh M (2006) Individualisierte Produkte – Komplexität beherrschen in Entwicklung und Produktion. Springer-Verlag, Berlin Heidelberg, Berlin, Heidelberg, VDI-BuchCrossRefGoogle Scholar
  53. Lipson H, Kurman M (2013) Fabricated: the new world of 3D printing. John Wiley & Sons, Indianapolis, IndianaGoogle Scholar
  54. Ma M, Wang Z, Gao M, Zeng X (2015) Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel. J Mater Process Technol 215:142–150. doi: 10.1016/j.jmatprotec.2014.07.034 CrossRefGoogle Scholar
  55. Meiners W (1999) Direktes selektives Laser-Sintern einkomponentiger metallischer Werkstoffe. Als Ms. gedr. Berichte aus der Lasertechnik, Shaker, AachenGoogle Scholar
  56. Merkt S (2016) Qualifizierung von generativ gefertigten Gitterstrukturen für maßgeschneiderte Bauteilfunktionen, RWTH AachenGoogle Scholar
  57. Merle A, Chandon J-L, Roux E, Alizon F (2010) Perceived value of the mass-customized product and mass customization experience for individual consumers. Prod Oper Manag 19(5):503–514. doi: 10.1111/j.1937-5956.2010.01131.x CrossRefGoogle Scholar
  58. Mertens A, Reginster S, Contrepois Q, Dormal T, Lemaire O, Lecomte-Beckers J (2014) Microstructures and mechanical properties of stainless steel AISI 316L processed by selective laser melting. MSF 783–786:898–903. doi: 10.4028/www.scientific.net/MSF.783-786.898 CrossRefGoogle Scholar
  59. Milgrom P, Roberts J (1990) The economics of modern manufacturing: technology, strategy, and organization. Am Econ Rev 80(3):511–528Google Scholar
  60. Mohles V, Facchini L, Vicente N, Lonardelli I, Magalini E, Robotti P, Molinari A (2010) Metastable Austenite in 17-4 precipitation-hardening stainless steel produced by selective laser melting. Adv Eng Mater 12(3):184–188. doi: 10.1002/adem.200900259 CrossRefGoogle Scholar
  61. Murr LE, Martinez E, Hernandez J, Collins S, Amato KN, Gaytan SM, Shindo PW (2012) Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting. J Mater Res Technol 1(3):167–177. doi: 10.1016/S2238-7854(12)70029-7 CrossRefGoogle Scholar
  62. Niendorf T, Brenne F (2013) Steel showing twinning-induced plasticity processed by selective laser melting—an additively manufactured high performance material. Mater Charact 85:57–63. doi: 10.1016/j.matchar.2013.08.010 CrossRefGoogle Scholar
  63. Over C (2003) Generative Fertigung von Bauteilen aus Werkzeugstahl X38CrMoV5-1 und Titan TiAl6V4 mit “Selective Laser Melting”. Berichte aus der Lasertechnik, Shaker, AachenGoogle Scholar
  64. Papadakis L, Loizou A, Risse J, Schrage J (2014) Numerical computation of component shape distortion manufactured by selective laser melting. Procedia CIRP 18:90–95. doi: 10.1016/j.procir.2014.06.113 CrossRefGoogle Scholar
  65. Piller F, Schoder D (1999) Mass customization und electronic commerce: Eine empirische Einschätzung zur Umsetzung in deutschen Unternehmen. Zeitschrift für Betriebswirtschaft 69(10):1111–1136Google Scholar
  66. Piller FT (2004) Mass customization: reflections on the state of the concept. Int J Flex Manuf Syst 16(4):313–334CrossRefzbMATHGoogle Scholar
  67. Piller FT, Weller C, Kleer R (2015) Business models with additive manufacturing—opportunities and challenges from the perspective of economics and management. In: Brecher C (ed) Advances in production technology. Springer, Cham, pp 39–48Google Scholar
  68. Pine JB (1993) Mass customization. The new frontier of business competition. Harvard University Press, Boston, MAGoogle Scholar
  69. Rayna T, Striukova L (2014) The impact of 3D printing technologies on business model innovation. In: Benghozi P, Krob D, Lonjon A, Panetto H (eds) Digital enterprise design & management, vol 261. Springer International Publishing, Cham, pp 119–132CrossRefGoogle Scholar
  70. Rayna T, Striukova L (2016) From rapid prototyping to home fabrication: How 3D printing is changing business model innovation. Technol Forecast Soc Chang 102:214–224CrossRefGoogle Scholar
  71. Rehme O (2007) Cellular design for laser freeform fabrication, StuttgartGoogle Scholar
  72. Rehme O (2009) Cellular design for laser freeform fabrication, 1. Aufl. Schriftenreihe Lasertechnik, Bd. 4. Cuvillier, GöttingenGoogle Scholar
  73. Rehme O (2011) Additive manufacturing zellularer metallischer StrukturenGoogle Scholar
  74. Rickenbacher L, Spierings A, Wegener K (2013) An integrated cost-model for selective laser melting (SLM). Rapid Prototyping J 19(3):208–214. doi: 10.1108/13552541311312201 CrossRefGoogle Scholar
  75. Roland Berger Strategy Consultants (2013) Additive manufacturing: a game changer for the manufacturing industry? Roland Berger StudieGoogle Scholar
  76. Saeed-Akbari A, Schwedt A, Bleck W (2012) Low stacking fault energy steels in the context of manganese-rich iron-based alloys. Scripta Mater 66(12):1024–1029. doi: 10.1016/j.scriptamat.2011.12.041 CrossRefGoogle Scholar
  77. Schleifenbaum H, Diatlov A, Hinke C, Bültmann J, Voswinckel H (2011) Direct photonic production: Towards high speed additive manufacturing of individualized goods. Prod Eng Res Devel 5(4):359–371. doi: 10.1007/s11740-011-0331-0 CrossRefGoogle Scholar
  78. Schleifenbaum JH (2012) Verfahren und Maschine zur individualisierten Produktion mit high power selective laser melting, Zugl.: Aachen, Techn. HochschGoogle Scholar
  79. Schrage J (2016) Maschinenspezifische Kostentreiber bei der additiven Fertigung mittels Laser-Strahlschmelzen (LBM). In: Kniffka W, Eichmann M, Witt G (eds) Rapid.Tech—international trade show & conference for additive manufacturing: proceedings of the 13th Rapid.Tech conference erfurt, Germany, 14–16 June 2016. Hanser, Carl, MünchenGoogle Scholar
  80. Schreier M (2006) The value increment of mass-customized products: an empirical assessment. J Consum Behav 5(4):317–327. doi: 10.1002/cb.183 CrossRefGoogle Scholar
  81. Schuh G, Arnoscht J, Bohl A (2013) Integriertes controlling von Produkt- und Produktionskomplexität. Controlling : Zeitschrift für erfolgsorientierte Unternehmenssteuerung 8(25):450–457CrossRefGoogle Scholar
  82. Schuh G, Behr M, Brecher C, Bührig-Polaczek A, Michaeli W, Schmitt R, Arnoscht J, Bohl A, Buchbinder D, Bültmann J, Diatlov A, Elgeti S, Herfs W, Hinke C, Karlberger A, Kupke D, Lenders M, Nußbaum C, Probst M, Queudeville Y, Quick J, Schleifenbaum H, Vorspel-Rüter M, Windeck C (2012) Individualised production. In: Brecher C (ed) Integrative production technology for high-wage countries. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 77–239CrossRefGoogle Scholar
  83. Schuh G, Potente T, Wesch-Potente C, Weber AR, Prote J-P (2014) Collaboration mechanisms to increase productivity in the context of industrie 4.0. Procedia CIRP 19:51–56. doi: 10.1016/j.procir.2014.05.016 CrossRefGoogle Scholar
  84. Shen Y, Cantwell WJ, Mines RA, Ushijima K (2012) The properties of lattice structures manufactured using selective laser melting. AMR 445:386–391. doi: 10.4028/scientific5/AMR.445.386 Google Scholar
  85. Shifeng W, Shuai L, Qingsong W, Yan C, Sheng Z, Yusheng S (2014) Effect of molten pool boundaries on the mechanical properties of selective laser melting parts. J Mater Process Technol 214(11):2660–2667. doi: 10.1016/j.jmatprotec.2014.06.002 CrossRefGoogle Scholar
  86. SLM Solutions Group AG (2015) SLM 500 HL selective laser melting system: product information sheet. http://slm-solutions.com/sites/default/files/attachment/page/2016/01/slm_500_english.pdf. Accessed 19 May 2016
  87. Steiner F (2014) Solution space development for mass customization: Impact of continuous product change on production ramp-up. Schriftenreihe innovative betriebswirtschaftliche Forschung und Praxis, vol 413. Kovač, HamburgGoogle Scholar
  88. The Economist (2011) Print me a stradivarius: how a new manufacturing technology will change the world. The EconomistGoogle Scholar
  89. Thomas DS, Gilbert SW (2014) Costs and cost effectiveness of additive manufacturing. National Institute of Standards and TechnologyGoogle Scholar
  90. Ulrich KT (2011) Design: creation of artifacts in society. University of Pennsylvania, PennsylvaniaGoogle Scholar
  91. Von Hippel E (2006) Democratizing innovation, 1. MIT Press paperback ed. MIT Press, Cambridge, MassGoogle Scholar
  92. Wang Z, Chen L, Zhao X, Zhou W (2014) Modularity in building mass customization capability: the mediating effects of customization knowledge utilization and business process improvement. Technovation 34(11):678–687. doi: 10.1016/j.technovation.2014.09.002 CrossRefGoogle Scholar
  93. Wei Q, Li S, Han C, Li W, Cheng L, Hao L, Shi Y (2015) Selective laser melting of stainless-steel/nano-hydroxyapatite composites for medical applications: Microstructure, element distribution, crack and mechanical properties. J Mater Process Technol 222:444–453. doi: 10.1016/j.jmatprotec.2015.02.010 CrossRefGoogle Scholar
  94. Weller C (2015) Economic perspectives on 3D printing. Dissertation, RWTH Aachen UniversityGoogle Scholar
  95. Weller C, Kleer R, Piller FT (2015a) Economic implications of 3D printing: market structure models in light of additive manufacturing revisited. Int J Prod Econ 164:43–56. doi: 10.1016/j.ijpe.2015.02.020 CrossRefGoogle Scholar
  96. Weller C, Kleer R, Piller FT (2015b) Economic value of digitized manufacturing: product customization with 3D printing. Presented at the 75th annual meeting of the academy of management, Vancouver, BCGoogle Scholar
  97. Wohlers T (2015) Wohlers Report 2015: 3D printing and additive manufacturing state of the industry; annual worldwide progress report. Fort Collins, Wohlers AssociatesGoogle Scholar
  98. Yadroitsev I, Smurov I (2010) Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape. Phys Procedia 5:551–560. doi: 10.1016/j.phpro.2010.08.083 CrossRefGoogle Scholar
  99. Yasa E, Kempen K, Kruth J-P, Thijs L, van Humbeeck J (2010) Microstructure and mechanical properties of maraging steel 300 after selective laser melting. In: SFF symposium, Solid Freeform Fabrication, 2010, AustinGoogle Scholar
  100. Zaichkowsky JL (1985) Measuring the involvement construct. J Consum Res 12(3):341. doi: 10.1086/208520 CrossRefGoogle Scholar
  101. Zhang B, Dembinski L, Coddet C (2013) The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder. Mater Sci Eng, A 584:21–31. doi: 10.1016/j.msea.2013.06.055 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Reinhart Poprawe
    • 1
  • Wolfgang Bleck
    • 2
  • Frank Thomas Piller
    • 3
  • Günther Schuh
    • 4
  • Sebastian Barg
    • 5
  • Arne Bohl
    • 5
  • Sebastian Bremen
    • 6
  • Jan Bültmann
    • 2
  • Christian Hinke
    • 7
  • Ruth Jiang
    • 3
  • Robin Kleer
    • 3
  • Simon Merkt
    • 7
  • Ulrich Prahl
    • 2
  • Michael Riesener
    • 5
  • Johannes Schrage
    • 7
  • Christian Weller
    • 3
  • Stephan Ziegler
    • 7
  1. 1.Fraunhofer Institute for Laser Technology (ILT)AachenGermany
  2. 2.Department of Ferrous Metallurgy (IEHK)RWTH Aachen UniversityAachenGermany
  3. 3.Research Area Technology, Innovation, Marketing, Entrepreneurship (TIME)RWTH Aachen UniversityAachenGermany
  4. 4.Laboratory for Machine Tools and Production Engineering (WZL)RWTH Aachen UniversityAachenGermany
  5. 5.Laboratory for Machine Tools and Production Engineering (WZL)RWTH Aachen UniversityAachenGermany
  6. 6.Fraunhofer Institute for Laser Technology (ILT)AachenGermany
  7. 7.Chair for Laser Technology (LLT)RWTH Aachen UniversityAachenGermany

Personalised recommendations