Advertisement

The Influence of Robot Appearance and Interactive Ability in HRI: A Cross-Cultural Study

  • Kerstin Sophie HaringEmail author
  • David Silvera-Tawil
  • Katsumi Watanabe
  • Mari Velonaki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9979)

Abstract

It has been shown that human perception of robots changes after the first interaction. It is not clear, however, to which extent the robot’s appearance and interactive abilities influences such changes in perception. In this paper, participants’ perception of two robots with different appearance and interactive modalities are compared before and after a short interaction with the robots. Data from Japanese and Australian participants is evaluated and compared. Experimental results show significant differences in perception depending on the robot type and the time of interaction. As a result of cultural background, perception changes were observed only for Japanese participants on isolated key concepts.

Keywords

Culture Human-robot interaction Robot perception 

References

  1. 1.
    Bartneck, C., Kulić, D., Croft, E., Zoghbi, S.: Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int. J. Soc. Robot. 1, 71–81 (2009)CrossRefGoogle Scholar
  2. 2.
    Gao, T., Scholl, B.J., McCarthy, G.: Dissociating the detection of intentionality from animacy in the right posterior superior temporal sulcus. J. Neurosci. 32(41), 14276–14280 (2012)CrossRefGoogle Scholar
  3. 3.
    Gray, K., Young, L., Waytz, A.: Mind perception is the essence of morality. Psychol. Inq. 23(2), 101–124 (2012)CrossRefGoogle Scholar
  4. 4.
    Haring, K.S., Watanabe, K., Mougenot, C.: The influence of robot appearance on assessment. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, pp. 131–132. IEEE Press (2013)Google Scholar
  5. 5.
    Haring, K.S., Silvera-Tawil, D., Matsumoto, Y., Velonaki, M., Watanabe, K.: Perception of an android robot in Japan and Australia: a cross-cultural comparison. In: Beetz, M., Johnston, B., Williams, M.-A. (eds.) ICSR 2014. LNCS (LNAI), vol. 8755, pp. 166–175. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-11973-1_17 Google Scholar
  6. 6.
    Haring, K.S., Silvera-Tawil, D., Takahashi, T., Velonaki, M., Watanabe, K.: Perception of a humanoid robot: a cross-cultural comparison. In: Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication, pp. 821–826. IEEE (2015)Google Scholar
  7. 7.
    Haring, K.S., Watanabe, K., Silvera-Tawil, D., Velonaki, M., Matsumoto, Y.: Touching an android robot: would you do it and how? In: Proceedings of the International Conference on Control, Automation and Robotics, pp. 8–13 (2015)Google Scholar
  8. 8.
    Kidd, C.D., Breazeal, C.: Effect of a robot on user perceptions. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 4, pp. 3559–3564. IEEE (2004)Google Scholar
  9. 9.
    Kim, R.H., Moon, Y., Choi, J.J., Kwak, S.S.: The effect of robot appearance types on motivating donation. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, pp. 210–211. ACM (2014)Google Scholar
  10. 10.
    Kozima, H., Nakagawa, C., Yano, H.: Can a robot empathize with people? Artif. Life Robot. 8(1), 83–88 (2004)CrossRefGoogle Scholar
  11. 11.
    Mori, M., MacDorman, K.F., Kageki, N.: The uncanny valley [from the field]. IEEE Robot. Autom. Mag. 19(2), 98–100 (2012)CrossRefGoogle Scholar
  12. 12.
    Oliver, R.L.: A cognitive model of the antecedents and consequences of satisfaction decisions. J. Mark. Res. 17, 460–469 (1980)CrossRefGoogle Scholar
  13. 13.
    Scholtz, J.: Theory and evaluation of human robot interactions. In: Proceedings of the Annual Hawaii International Conference on System Sciences, pp. 1–10. IEEE Computer Society (2003)Google Scholar
  14. 14.
    Strait, M., Canning, C., Scheutz, M.: Let me tell you! investigating the effects of robot communication strategies in advice-giving situations based on robot appearance, interaction modality and distance. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, pp. 479–486. ACM (2014)Google Scholar
  15. 15.
    Straub, D., Keil, M., Brenner, W.: Testing the technology acceptance model across cultures: a three country study. Inf. Manage. 33(1), 1–11 (1997)CrossRefGoogle Scholar
  16. 16.
    Vernon, R.J.W., Sutherland, C.A.M., Young, A.W., Hartley, T.: Modeling first impressions from highly variable facial images. Proc. National Acad. Sci. 111(32), E3353–E3361 (2014)CrossRefGoogle Scholar
  17. 17.
    Yanco, H.A., Drury, J.L.H.: Classifying human-robot interaction: an updated taxonomy. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2841–2846 (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Kerstin Sophie Haring
    • 1
    Email author
  • David Silvera-Tawil
    • 2
  • Katsumi Watanabe
    • 3
  • Mari Velonaki
    • 2
  1. 1.Department of Behavioral Sciences & LeadershipUS Air Force AcademyColorado SpringsUSA
  2. 2.Creative Robotics LabThe University of New South WalesPaddingtonAustralia
  3. 3.Department of Intermedia Art and ScienceWaseda UniversityTokyoJapan

Personalised recommendations