Advertisement

Aujeszky’s Disease

  • Ewelina Czyżewska Dors
  • Małgorzata Pomorska MólEmail author
Chapter

Abstract

Aujeszky’s disease (AD) or pseudorabies (PR), also referred as “mad itch,” is a highly contagious, economically significant disease of pigs caused by suid herpesvirus 1 (SHV-1). ADV can infect a wide range of mammals and birds, but it is considered as non-pathogenic for human. In non-porcine species, ADV infection resulting in fatal encephalitis is often associated with pruritus. In members of Suidae family (true pigs), the disease is characterised by central nervous system, respiratory system or reproductive system disorders that vary among different age groups. The important property of ADV is its ability to establish latency in pigs that survive an acute infection.

Keywords

Aujeszky’s disease Pseudorabies Suid herpesvirus 1 Pigs Central nervous system disorders Respiratory system disorders Reproductive system disorders 

References

  1. Aleman N, Quiroga MI, Lopez-Pena M et al (2001) Induction and inhibition of apoptosis by pseudorabies virus in the trigeminal ganglion during acute infection of swine. J Virol 75:469–479PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allepuz A, Seaz M, Solymosi N et al (2009) The role of spatial factors in the success of an Aujeszky’s disease eradication programme in a high pig density area (Northeast Spain, 2003-2007). Prev Vet Med 91:153–160PubMedCrossRefGoogle Scholar
  3. Alva-Valdes R (1981) Pseudorabies (Aujeszky’s disease): effect of vaccination on lesion development and immune response in challenged swine. Dissertation, Iowa State UniversityGoogle Scholar
  4. Ambagala AP, Hinkley S, Srikumaran S (2000) An early pseudorabies virus protein down-regulates porcine MHC class I expression by inhibition of transporter associated with antigen processing (TAP). J Immunol 164:93–99PubMedCrossRefGoogle Scholar
  5. Andries K, Pensaert MB, Pandeputte J (1978) Effects of experimental infection with pseudorabies (Aujeszky’s disease) on pigs with maternal immunity from vaccinated sows. Am J Vet Res 39:1282–1285PubMedGoogle Scholar
  6. Babic N, Kluup B, Brack A et al (1996) Deletion of glycoprotein gE reduces the propagation of pseudorabies virus in the nervous system of mice after intranasal inoculation. Virology 219:279–284PubMedCrossRefGoogle Scholar
  7. Balasch M, Pujols J, Segalés J (1998) Study of the persistence of Aujeszky’s disease (pseudorabies) virus in peripheral blood mononuclear cells and tissues of experimentally infected pigs. Vet Microbiol 62:171–183PubMedCrossRefGoogle Scholar
  8. Baskerville A (1973) The histopathology of experimental pneumonia in pigs produced by Aujeszky’s disease virus. Res Vet Sci 14:223–228PubMedGoogle Scholar
  9. Benndorf E, Hantschel H (1963) Zum Verhalten des Aujeszkyvirus bei veschiedenen Wasserstoffkonzentrationen. Arch Exp Vet Med 17:1357–1362Google Scholar
  10. Beran GW (1991) Transmission of Aujeszky’s disease virus. In: Proceedings of the 1st International Symposium on the Eradication of Pseudorabies (Aujeszky’s) Virus. St. Paul, Minnesota, pp 93–111Google Scholar
  11. Beran GW, Davies EB, Arambulo PV et al (1980) Persistence of pseudorabies virus in infected swine. J Am Vet Med Assoc 176:988–1000Google Scholar
  12. Biermann U, Herbst W, Schliesser T (1990) The persistence of bovine enterovirus and pseudorabies virus in liquid cattle manure at different storage temperatures. Berl Munch Tierarztl Wochenschr 103:88–90PubMedGoogle Scholar
  13. Blaha T (1989) Aujeszky’s disease (pseudorabies). In: Blaha T (ed) Applied veterinary epidemiology. Elsevier, Amsterdam, pp 83–87Google Scholar
  14. Boadella M, Gortázar C, Vicente J et al (2012) Wild boar: an increasing concern for Aujeszky’s disease control in pigs? BMC Vet Res 8:7PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bolin CA, Bolin SR, Kluge JP et al (1985) Pathologic effects of intrauterine deposition of pseudorabies virus on the reproductive tract of swine in early pregnancy. Am J Vet Res 46:1039–1042PubMedGoogle Scholar
  16. Bøtner A (1991) Survival of Aujeszky’s disease virus in slurry at various temperatures. Vet Microbiol 29:225–235PubMedCrossRefGoogle Scholar
  17. Bouma A, De Jong MC, Kimman TG (1997) The influence of maternal immunity on the transmission of pseudorabies virus and on the effectiveness of vaccination. Vaccine 15:287–294PubMedCrossRefGoogle Scholar
  18. Bouma A, De Jong MDM, Kimman TG (1998) The influence of maternal immunity on the development of the in vitro lymphocyte proliferation response against pseudorabies virus in pigs. Res Vet Sci 64:167–171Google Scholar
  19. Brittle EE, Reynolds AE, Enquist LW (2004) Two modes of pseudorabies virus neuroinvasion and lethality in mice. J Virol 78:12951–12963PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brukman A, Enquist LW (2006) Suppression of the interferon-mediated innate immune response by pseudorabies virus. J Virol 80:6345–6356PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cheung AK (1989) Detection of pseudorabies virus transprits in trigeninal ganglia of latently infected swine. J Virol 63:2908–2913PubMedPubMedCentralGoogle Scholar
  22. Cook D, Hill HT, Kinker DR (1990) Efficacy of a killed gpX deleted pseudorabies virus vaccine. Can J Vet Res 54:438–445PubMedPubMedCentralGoogle Scholar
  23. Corn JL, Stallknecht DE, Mechlin NM et al (2004) Persistence of pseudorabies virus in feral swine populations. J Wildl Dis 40:307–310PubMedCrossRefGoogle Scholar
  24. Cramer SD, Campbell GA, Njaa BL et al (2011) Pseudorabies virus infection in Oklahoma hunting dogs. J Vet Diagn Invest 23:915–923PubMedCrossRefGoogle Scholar
  25. Davies EB, Beran G (1980) Spontaneous shedding of pseudorabies virus from a clinically recovered postparturient sow. J Am Vet Med Assoc 176:1345–1347PubMedGoogle Scholar
  26. Davies EB, Beran GW (1981) Influence of environmental factors upon the survival of Aujeszky’s disease virus. Res Vet Sci 31:32–36PubMedGoogle Scholar
  27. De Bruin MG, De Visser YE, Kimman TG et al (1998) Time course of the porcine cellular and humoral immune response in vivo against pseudorabies virus after inoculation and challenge: significante of in vitro antigenic restimulation. Vet Immunol Immunopathol 65:75–87PubMedCrossRefGoogle Scholar
  28. De Regge N, Van Opdenbosch N, Nauwynck HJ et al (2010) Interferon alpha induces establishment of alphaherpesvirus latency in sensory neurons in vitro. PLoS One 5(9):e13076. doi: 10.1371/journal.pone.0013076 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Deruelle MJ, Van den Broeke C, Nauwynck HJ et al (2009) Pseudorabies virus US3- and UL49.5-dependent and -independent downregulation of MHC I cell surface expression in different cell types. Virology 395:172–181. doi: 10.1016/j.virol.2009.09.019 PubMedCrossRefGoogle Scholar
  30. Díaz I, Cortey M, Darwich L et al (2012) Subclinical porcine circovirus type 2 infection does not modulate the immune response to an Aujeszky’s disease virus vaccine. Vet J 194:84–88. doi: 10.1016/j.tvjl.2012.02.014 PubMedCrossRefGoogle Scholar
  31. Donaldson AI, Wardley RC, Martin S et al (1983) Experimental Aujeszky’s disease in pigs: excretion, survival and transmission of the virus. Vet Rec 113:490–494PubMedCrossRefGoogle Scholar
  32. Durham PJK, Gow A, Poole WSH (1980) Survival of Aujeszky’s disease virus in frozen pig meat. Res Vet Sci 28:256–258PubMedGoogle Scholar
  33. Dvorakova H, Prodelalova J, Reichelova M (2008) Comparative inactivation of Aujeszky’s disease virus, porcine teschovirus and vesicular stomatitis virus by chemical disinfectants. Vet Med (Praha) 53:236Google Scholar
  34. European Commission (2008). Commission Decision of 21 February 2008 on additional guarantees in intra-Community trade of pigs relating to Aujeszky’s disease and criteria to provide information on this disease 2008/185/EC: Official Journal of the European Communities L 316, 5–35Google Scholar
  35. Farrell MJ, Dobson AT, Feldman LT (1991) Herpes simplex virus latency associated transcript is a stable intron. Proc Natl Acad Sci U S A 88:790–794PubMedPubMedCentralCrossRefGoogle Scholar
  36. Flori L, Rogel-Gaillard C, Cochet M et al (2008) Transcriptomic analysis of the dialogue between Pseudorabies virus and porcine epithelial cells during infection. BMC Genomics 9:123. doi: 10.1186/1471-2164-9-123 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fuentes-González AM, Contreras-Paredes A, Manzo-Merino J et al (2013) The modulation of apoptosis by oncogenic viruses. Virol J 10:182. doi: 10.1186/1743-422X-10-182 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Garcia-Siera J, Rozeboom DW, Straw BE et al (2001) Studies on survival of pseudorabies virus, Actinobacillus pleuropneumoniae, and Salmonella serovar Choleraesuis in composted swine carcasses. J Swine Health Prod 9:225–231Google Scholar
  39. Geenen KH, Favoreel W, Nauwynck HJ (2005) Higher resistance of porcine trigeminal ganglion neurons towards pseudorabies virus-induced cell death compared with other porcine cell types in vitro. J Gen Virol 86:1251–1260PubMedCrossRefGoogle Scholar
  40. Gerdts V, Jons A, Makoschey B et al (1997) Protection of pigs against Aujeszky’s disease by DNA vaccination. J Gen Virol 78:2139–2146PubMedCrossRefGoogle Scholar
  41. Glass C, McLean R, Katz J et al (1994) Isolation of pseudorabies (Aujeszky’s disease) virus from a Florida panther. J Wildl Dis 30:180–184PubMedCrossRefGoogle Scholar
  42. Glorieux S (2009) Invasion of pseudorabies virus in porcine nasal respiratory mucosa explants. Dissertation, Ghent UniversityGoogle Scholar
  43. Glorieux S, Favoreel HW, Steukers L et al (2011) A trypsin-like serine protease is involved in pseudorabies virus invasion through the basement membrane barrier of porcine nasal respiratory mucosa. Vet Res 42:58. doi: 10.1186/1297-9716-42-58 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Granzow H, Klupp BG, Mettenleiter TC (2004) The pseudorabies virus US3 protein is a component of primary and of mature virions. J Virol 78:1314–1323PubMedPubMedCentralCrossRefGoogle Scholar
  45. Grauwet K, Cantoni C, Parodi M et al (2014) Modulation of CD112 by the alphaherpesvirus gD protein suppresses DNAM-1-dependent NK cell-mediated lysis of infected cells. Proc Natl Acad Sci U S A 111:16118–16123. doi: 10.1073/pnas.1409485111 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Guo H, Shen S, Wang L et al (2010) Role of tegument proteins in herpesvirus assembly and egress. Protein Cell 1:987–998PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hoegen B, Saalmuller A, Rottgen M et al (2004) Interferon-gamma response of PBMC indicates productive pseudorabies virus (PRV) infection in swine. Vet Immunol Immunopathol 102:389–397PubMedCrossRefGoogle Scholar
  48. Hsu FS, Chu RM, Lee RC et al (1980) Placental lesions caused by pseudorabies virus in pregnant sows. J Am Vet Med Assoc 177:636–641PubMedGoogle Scholar
  49. Huang C, Wu CY (2004) Characterization and expression of the pseudorabies virus early gene UL54. J Virol Methods 119:129–136PubMedCrossRefGoogle Scholar
  50. Jacobs L, Mulder WA, Van Oirschot JT et al (1993) Deleting two amino acids in glycoprotein gI of pseudorabies virus decreases virulence and neurotropism for pigs, but does not affect immunogenicity. J Gen Virol 74:2201–2206PubMedCrossRefGoogle Scholar
  51. Kapitein LC, Hoogenraad CC (2011) Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol Cell Neurosci 46:9–20PubMedCrossRefGoogle Scholar
  52. Kimman TMG, De Bruin JJM, Voermans BPH et al (1995) Development and antigen specificity of the lymphoproliferation response of pigs to pseudorabies virus: dichotomy between secondary B- and T-cell response. Immunology 86:372–378PubMedPubMedCentralGoogle Scholar
  53. Kirkpatrick CM, Kanitz CL, McCrocklin SM (1980) Possible role of wild mammals in transmission of pseudorabies to swine. J Wildl Dis 16:601–614PubMedCrossRefGoogle Scholar
  54. Kluge JP, Beran GW, Hill HT et al (1999) Pseudorabies (Aujeszky’s disease). In: Straw BE, D’allaire S, Mengeling WL, Taylor DJ (eds) Disease of Swine, 8th edn. Blackwell Science, Ames, pp 233–246Google Scholar
  55. Klupp BG, Fuchs W, Weiland E et al (1997) Pseudorabies virus glycoprotein L is necessary for virus infectivity but dispensable for virion localization of glycoprotein H. J Virol 71:7687–7695Google Scholar
  56. Klupp BG, Hengartner CJ, Mettenleiter T (2004) Complete, annotated sequence of the pseudorabies virus genome. J Virol 78:424–440PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kopp M, Granzow H, Fuchs W et al (2004) Simultaneous deletion of Pseudorabies virus tegument protein UL11 and glycoprotein M severely impairs secondary envelopment. J Virol 78:3024–3034.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Köppel C, Knopf L, Ryser MP et al (2007) Serosurveillance for selected infectious disease agents in wild boars (Sus scrofa) and outdoor pigs in Switzerland. Eur J Wildl Res 53:212–220CrossRefGoogle Scholar
  59. Koyuncu OO, Hogue IB, Enquist LW (2013a) Virus infections in the nervous system. Cell Host Microbe 13:379–393PubMedPubMedCentralCrossRefGoogle Scholar
  60. Koyuncu OO, Perlman DH, Enquist LW (2013b) Efficient retrograde transport of pseudorabies virus within neurons requires local protein synthesis in axons. Cell Host Microbe 13:54–66PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kritas SK, Pensaert MB, Mettenleiter TC (1994) Invasion and spread of single glycoprotein deleted mutants of Aujeszky’s disease virus (ADV) in the trigeminal nervous pathway of pigs after intranasal inoculation. Vet Microbiol 40:323–334PubMedCrossRefGoogle Scholar
  62. Kukushkin S, Baborenko E, Baybikov T et al (2009) Seroprevalence of antibodies to main porcine infectious pathogens in wild boar in some regions of Russia. Acta Silvatica et Lignaria Hungarica 5:147–152Google Scholar
  63. Lari A, Lorenzi D, Nigrelli D et al (2006) Pseudorabies virus in European wild boar from Central Italy. J Wildl Dis 42:319–324PubMedCrossRefGoogle Scholar
  64. Luxton GW, Lee JI, Haverlock-Moyns S et al (2006) The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport. J Virol 80:201–209PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ma W, Lager KM, Richt JA et al (2008) Development of real-time polymerase chain reaction assays for rapid detection and differentiation of wild-type pseudorabies and gene-deleted vaccine viruses. J Vet Diagn Invest 20:440–447PubMedCrossRefGoogle Scholar
  66. Marcaccini A, López Peña M, Quiroga MI et al (2008) Pseudorabies virus infection in mink: a host-specific pathogenesis. Vet Immunol Immunopathol 124:264–273. doi: 10.1016/j.vetimm.2008.03.013 PubMedCrossRefGoogle Scholar
  67. McCaw MB, Osorio FA, Wheeler J et al (1997) Effect of maternally acquired Aujeszky’s disease (pseudorabies) virus-specific antibody in pigs on establishment of latency and seroconversion to differential glycoproteins after low dose challenge. Vet Microbiol 55:91–98PubMedCrossRefGoogle Scholar
  68. McFerran JB, Dow C (1965) The distribution of the virus of Aujeszky’s disease (pseudorabies virus) in experimentally infected swine. Am J Vet Res 26:631–635PubMedGoogle Scholar
  69. McFerran JB, Dow C, McCracken RM (1979) Experimental studies in weaned pigs with three vaccines against Aujeszky’s disease. Comp Immunol Microbiol Infect Dis 2:327–334PubMedCrossRefGoogle Scholar
  70. McGregor S, Easterday BC, Kaplan AS et al (1985) Vaccination of swine with thymidine kinase-deficient mutants of pseudorabies virus. Am J Vet Res 46:1494–1497PubMedGoogle Scholar
  71. Meier RK, Ruiz-Fons F, Ryser-Degiorgis M-P (2015) A picture of trends in Aujeszky’s disease virus exposure in wild boar in the Swiss and European contexts. BMC Vet Res 11:277. doi: 10.1186/s12917-015-0592-5 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mettenleiter TC (1994) Initiation and spread of α-herpesvirus infections. Trends Microbiol 2:2–4PubMedCrossRefGoogle Scholar
  73. Mettenleiter TC (1996) Immunobiology of pseudorabies (Aujeszky’s disease). Vet Immunol Immunopathol 54:221–229PubMedCrossRefGoogle Scholar
  74. Mettenleiter TC (2000) Aujeszky’s disease (pseudorabies) virus: the virus and molecular pathogenesis – State of the art. Vet Res 31:99–115PubMedGoogle Scholar
  75. Mettenleiter TC (2002) Brief overview on cellular virus receptors. Virus Res 82:3–8PubMedCrossRefGoogle Scholar
  76. Mettenleiter TC, Ehlers B, Muller T et al (2012) In: Zimmerman JJ, Karriker LA, Ramírez A, Schwartz KJ, Stevenson GW (eds) Diseases of swine, 10th edn. Wiley-Blackwell Publishing, Ames, pp 421–455Google Scholar
  77. Mettenleiter TC, Klupp BG, Granzow H (2009) Herpesvirus assembly: an update. Virus Res 143:222–234PubMedCrossRefGoogle Scholar
  78. Mettenleiter TC, Zsak L, Zuckermann F et al (1990) Interaction of glycoprotein gIII with a cellular heparinlike substance mediates adsorption of pseudorabies virus. J Virol 64:278–286PubMedPubMedCentralGoogle Scholar
  79. Mikulska-Skupień E, Szweda W, Procajło Z (2005) Evaluation of specific humoral immune response in pigs vaccinated intradermally with deleted Aujeszky’s disease vaccine and challenged with virulent strain of Herpesvirus suis type 1. Pol J Vet Sci 8:11–16PubMedGoogle Scholar
  80. Miller LC, Zanella EL, Waters WR et al (2010) c. Clin Vaccine Immunol 17:728–734PubMedPubMedCentralCrossRefGoogle Scholar
  81. Miry C, Pensaert MB (1989) Sites of virus replication in the genital organs of boars inoculated in the cavum vaginale with pseudorabies virus. Am J Vet Res 50:345–348PubMedGoogle Scholar
  82. Miry C, Pensaert MB, Bonte P et al (1987) Effect of intratesticular inoculation with Aujeszky’s disease virus on genital organs of boars. Vet Microbiol 14:355–363PubMedCrossRefGoogle Scholar
  83. Montagnaro S, Sasso S, De Martino L et al (2010) Prevalence of antibodies to selected viral and bacterial pathogens in wild boar (Sus scrofa) in Campania Region, Italy. J Wildl Dis 46:316–319PubMedCrossRefGoogle Scholar
  84. Morrow WEM, O’Quinn P, Barker J et al (1995) Composting as a suitable technique for managing swine mortalities. Swine Health Prod 3:236–243Google Scholar
  85. Müller T, Hahn EC, Tottewitz F et al (2011) Pseudorabies virus in wild swine: a global perspective. Arch Virol 156:1691–1705. doi: 10.1007/s00705-011-1080-2 PubMedCrossRefGoogle Scholar
  86. Müller T, Teuffert J, Staubach C et al (2005) Long-term studies on maternal immunity for Aujeszky’s disease and classical swine fever in wild boar piglets. J Vet Med B Infect Dis Vet Public Health 52:432–436PubMedCrossRefGoogle Scholar
  87. Müller TF, Teuffert J, Zellmer R et al (2001) Experimental infection of European wild boars and domestic pigs with pseudorabies viruses with differing virulence. Am J Vet Res 62:252–258PubMedCrossRefGoogle Scholar
  88. Narita M, Haritani M, Moriwaki M et al (1985) Pseudorabies virus in dexamethasone-treated pigs. Vet Pathol 22:417–419PubMedCrossRefGoogle Scholar
  89. Nauwynck H, Glorieux S, Favoreel H et al (2007) Cell biological and molecular characteristics of pseudorabies virus infections in cell cultures and in pigs with emphasis on the respiratory tract. Vet Res 38:229–241PubMedCrossRefGoogle Scholar
  90. Nauwynck HJ, Pensaert MB (1995) Cell-free and cell-associated viremia in pigs after oronasal infection with Aujeszky’s disease virus. Vet Microbiol 43:307–314CrossRefGoogle Scholar
  91. Ndjamen B, Farley AH, Lee T et al (2014) The herpes virus Fc receptor gE-gI mediates antibody bipolar bridging to clear viral antigens from the cell surface. PLoS Pathog 10:e1003961. doi: 10.1371/journal.ppat.100396 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Nixdorf R, Schmidt J, Karger A et al (1999) Infection of Chinese hamster ovary cells by pseudorabies virus. J Virol 73:8019–8026PubMedPubMedCentralGoogle Scholar
  93. OIE Terrestrial Manual (2012) Aujeszky’s disease, Chapter 2.1.2. http://www.oie.int/fileadmin/Home/fr/Health_standards/tahm/2.01.02_AUJESZKYS_DIS.pdf
  94. Paluszak Z, Lipowski A, Ligocka A (2012) Survival rate of Suid herpesvirus (SuHV-1, Aujeszky’s disease virus, ADV) in composted sewage sludge. Pol J Vet Sci 15:51–54PubMedGoogle Scholar
  95. Pan Z, Zhang C, Ding J et al (2001) Thymidine kinase gene mutation leads to reduced virulence of pseudorabies virus. Chin Sci Bull 46:1972–1975CrossRefGoogle Scholar
  96. Pannwitz G, Freuling C, Denzin N et al (2012) A long-term serological survey on Aujeszky’s disease virus infections in wild boar in East Germany. Epidemiol Infect 140:348–358PubMedCrossRefGoogle Scholar
  97. Pedersen K, Bevins SN, Baroch JA et al (2013) Pseudorabies in feral swine in the United States, 2009–2012. J Wildl Dis 49:709–713PubMedCrossRefGoogle Scholar
  98. Pensaert MB, Kluge JB (1989) Pseudorabies virus (Aujeszky’s disease). In: Pensaert MB (ed) Virus infection of porcine. Elsevier, Amsterdam, pp 39–64Google Scholar
  99. Pensaert MB, Miry C, Biront P et al (1987) Evolution of Aujeszky’s disease in Belgium (1974-1987). Tijdschr Diergeneeskd 56:425–432Google Scholar
  100. Pensaert MB, Vandeputte J, Andries K (1982) Oronasal challenge of fattening pigs after vaccination with an inactivated Aujeszky’s disease vaccine. Res Vet Sci 32:12–16PubMedGoogle Scholar
  101. Pol JMA (1990) Interferons affect the morphogenesis and virulence of pseudorabies virus. Dissertation, RijksuniversiteitGoogle Scholar
  102. Pomeranz LE, Reynolds AE, Hengartner CJ (2005) Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69:462–500. doi: 10.1128/MMBR.69.3.462-500.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Pomorska-Mól M, Czyżewska-Dors E, Kwit K et al (2015a) Immune response in pigs treated with therapeutic doses of enrofloxacin at the time of vaccination against Aujeszky’s disease. Res Vet Sci 100:68–74. doi: 10.1016/j.rvsc.2015.04.003 PubMedCrossRefGoogle Scholar
  104. Pomorska-Mól M, Czyżewska-Dors E, Kwit K et al (2015b) Ceftiofur hydrochloride affects the humoral and cellular immune response in pigs after vaccination against swine influenza and pseudorabies. BMC Vet Res 11:268. doi: 10.1186/s12917-015-0586-3 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Pomorska-Mól M, Kwit K, Markowska-Daniel I et al (2014) The effect of doxycycline treatment on the postvaccinal immune response in pigs. Toxicol Appl Pharmacol 278:31–38. doi: 10.1016/j.taap.2014.04.006 PubMedCrossRefGoogle Scholar
  106. Pomorska-Mól M, Markowska-Daniel I (2010a) Interferon-γ secretion and proliferative responses of peripheral blood mononuclear cells after vaccination of pigs against Aujeszky’s disease in the presence of maternal immunity. FEMS Immunol Med Microbiol 58:405–411. doi: 10.1111/j.1574-695X.2010.00651.x PubMedCrossRefGoogle Scholar
  107. Pomorska-Mól M, Markowska-Daniel I, Pejsak Z (2010b) Evaluation of humoral and antigen-specific T-cell responses after vaccination of pigs against pseudorabies in the presence of maternal antibodies. Vet Microbiol 144:45–454. doi: 10.1016/j.vetmic.2010.01.015 CrossRefGoogle Scholar
  108. Prieto J, Hernandez AMM, Tabares E (1991) Loss of pseudorabies virus thymidine kinase activity due to a single base mutation and amino acid substitution. J Gen Virol 72:1435–1439PubMedCrossRefGoogle Scholar
  109. Rauh I, Mettenleiter TC (1991) Pseudorabies virus glycoproteins gII and gp50 are essential for virus penetration. J Virol 65:5348–5356Google Scholar
  110. Ren Y, Li G, Su D et al (2012) Characterization of pseudorabies viruses produced in mammalian cells by viral genome transfection. Afr J Biotechnol 11:4098–4102Google Scholar
  111. Roizman B, Pellet PE (2001) The family herpesviridae: a brief introduction. In: Knipe DM, Howley PM (eds) Fields virology, vol 2, 4th edn. Lippincott William&Wilkins, Philadelphia, pp 2381–2397Google Scholar
  112. Romero CH, Meade PN, Homer BL (2003) Potential sites of virus latency associated with indigenous pseudorabies viruses in feral swine. J Wildl Dis 39:567–575PubMedCrossRefGoogle Scholar
  113. Rziha HJ, Mettenleiter TC, Ohlinger V et al (1986) Herpesvirus (pseudorabies virus) latency in swine: occurrence and physical state of viral DNA in neural tissues. Virology 155:600–613PubMedCrossRefGoogle Scholar
  114. Sabo A, Rajcani J, Blaskovic D (1969) Studies on the pathogenesis of Aujeszky’s disease virus. III. The distribution of virulent virus in piglets after intranasal infection. Acta Virol 13:407–714PubMedGoogle Scholar
  115. Sakano T, Shibata I, Samegai Y et al (1993) Experimental pneumonia of pigs infected with Aujeszky’s disease virus and Actinobacillus pleuropneumoniae. J Vet Med Sci 55:575–579PubMedCrossRefGoogle Scholar
  116. Schoenbaum MA, Beran GW, Murphy DP (1990a) Pseudorabies virus latency and reactivation in vaccinated swine. Am J Vet Res 51:334–338PubMedGoogle Scholar
  117. Schoenbaum MA, Zimmerman JJ, Beran GW et al (1990b) Survival of pseudorabies virus in aerosol. Am J Vet Res 51:331–333PubMedGoogle Scholar
  118. Sedlak K, Bartova E, Machova J (2008) Antibodies to selected viral disease agents in wild boars from the Czech Republic. J Wildl Dis 44:777–780PubMedCrossRefGoogle Scholar
  119. Serena MS, Metz GE, Panei CJ et al (2015) Development of an AGID based on baculovirus expressed Pseudorabies virus glycoprotein B. In: Front Immunol Conference Abstract: ImmunoColombia 2015 - 11th Congress of the Latin American Association of Immunology-10o. Congreso de la Asociación Colombiana de Alergia, Asma e Inmunología. doi: 10.3389/conf.fimmu.2015.05.00236
  120. Shibata I, Okada M, Urono K et al (1998) Experimental dual infection of cesarean-derived, colostrum-deprived pigs with Mycoplasma hyopneumoniae and pseudorabies virus. J Vet Med Sci 60:295–300PubMedCrossRefGoogle Scholar
  121. Shibata I, Yazawa S, Ono M et al (2003) Experimental dual infection of specific pathogen-free pigs with porcine reproductive and respiratory syndrome virus and pseudorabies virus. J Vet Med B Infect Dis Vet Public Health 50:14–19PubMedCrossRefGoogle Scholar
  122. Smith GA, Gross SP, Enquist LW (2001) Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons. Proc Natl Acad Sci U S A 98:3466–3470PubMedPubMedCentralCrossRefGoogle Scholar
  123. Spear PG, Eisenberg RJ, Cohen GH (2000) Three classes of cell surface receptors for alphaherpesvirus entry. Virology 275:1–8.Google Scholar
  124. Szweda W, Lipowski A, Ciecierski H et al (1998) European wild boar (Sus scrofa L.) as a reservoir of Herpesvirus suis 1. Med Weter 54:541–544Google Scholar
  125. Tanaka S, Mannen K (2003) Effect of mild stress in mice latently infected pseudorabies virus. Exp Anim 52:383–386PubMedCrossRefGoogle Scholar
  126. Tanaka S, Mannen K (2008) Pregnancy and parturition of mice latently infected with Pseudorabies virus. Exp Anim 57:149–152PubMedCrossRefGoogle Scholar
  127. Tenhagen BA, Bollwahn W, Seidler MJ (1995) Vaccination trial against Aujeszky’s disease: development of antibodies in sow serum, colostrum and the serum of suckling piglets and the influence of maternal antibodies on the serologic vaccination reaction of weaned piglets. Dtsch Tierärztl Wschr 102:86–90Google Scholar
  128. The Center for Food Security and Public Health (2006) Iowa State University. http://www.cfsph.iastate.edu/Factsheets/pdfs/aujeszkys_disease.pdf
  129. Thomson BJ (2001) Viruses and apoptosis. Int J Exp Pathol 82:65–76PubMedPubMedCentralCrossRefGoogle Scholar
  130. Tong W, Liu F, Zheng H et al (2015) Emergence of a pseudorabies virus variant with increased virulence to piglets. Vet Microbiol 181(3-4):236–240. doi: 10.1016/j.vetmic.2015.09.021 PubMedCrossRefGoogle Scholar
  131. Turner C, Williams SM, Cumby TR (2000) The inactivation of foot and mouth disease, Aujeszky’s disease and classical swine fever viruses in pig slurry. J Appl Microbiol 89:760–767PubMedCrossRefGoogle Scholar
  132. Umbach JL, Kramer MF, Jurak I et al (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454:780–783PubMedPubMedCentralGoogle Scholar
  133. USDA (2008) Pseudorabies (Aujeszky’s disease) and its eradication. Animal and plant health inspection service. Technical Bulletin No. 1923. https://www.aasv.org/documents/pseudorabiesreport.pdf
  134. Van De Walle G (2003) Pseudorabies virus-specific antibodies mask infected monocytes from immune recognition, induce a quiescent infection, and allow virus transmission to endothelial cells. Dissertation, Gent UniversityGoogle Scholar
  135. Van Rooij EM, de Bruin MG, de Visser YE et al (2004) Vaccine-induced T cell-mediated immunity plays a critical role in early protection against pseudorabies virus (suid herpesvirus type 1) infection in pigs. Vet Immunol Immunopathol 99:113–125PubMedCrossRefGoogle Scholar
  136. Van Rooij EM, Haagmans BL, Glansbeek HL et al (2000) A DNA vaccine coding for glycoprotein B of pseudorabies virus induces cell-mediated immunity in pigs and reduces virus excretion early after infection. Vet Immunol Immunopathol 74:121–136PubMedCrossRefGoogle Scholar
  137. Vannier P, Cariolet R (1991) Vaccination of pigs against Aujeszky’s disease by the intradermal route using live attenuated and inactivated virus vaccines. Vet Microbiol 26:11–23PubMedCrossRefGoogle Scholar
  138. Vengust G, Valencak Z, Bidovec A (2006) A serological survey of selected pathogens in wild boar in Slovenia. J Vet Med Ser B Infect Dis Vet Public Health 53:24–27CrossRefGoogle Scholar
  139. Verpoest S, Cay AB, Bertrand O et al (2014) Isolation and characterization of pseudorabies virus from a wolf (Canis lupus) from Belgium. Eur J Wildl Res 60:149–153CrossRefGoogle Scholar
  140. Vicente-Rubiano M, Martınez-Lopez B, Sanchez-Vizcaıno F et al (2014) A new approach for rapidly assessing the risk of Aujeszky’s Disease reintroduction into a disease-free Spanish territory by analysing the movement of live pigs and potential contacts with wild boar. Transbound Emerg Dis 61:350–361. doi: 10.1111/tbed.12041 PubMedCrossRefGoogle Scholar
  141. Viejo-Borbolla A, Munoz A, Tabares E et al (2010) Glycoprotein G from pseudorabies virus binds to chemokines with high affinity and inhibits their function. J Gen Virol 91:23–31PubMedCrossRefGoogle Scholar
  142. Vilnis A, Sussman MD, Thacker BJ et al (1998) Vaccine genotype and route of administration affect pseudorabies field virus latency load after challenge. Vet Microbiol 62:81–96PubMedCrossRefGoogle Scholar
  143. Visser N (1997) Vaccination strategies for improving the efficacy of programs to eradicate Aujeszky’s disease virus. Vet Microbiol 55:61–74PubMedCrossRefGoogle Scholar
  144. Wang T, Xiao Y, Yang Q et al (2015) Construction of a gE-deteted psudorabies virus and its efficacy to the new-emerging variant PRV challenge in the form of killed vaccine. Biomed Res Int 2015:684945. doi: 10.1155/2015/684945 PubMedPubMedCentralGoogle Scholar
  145. White AK, Ciacci-Zanella J, Galeota-Wheeler J et al (1994) Detection of latent pseudorabies virus infections. In: 37th Annual Meeting of the American Association of Veterinary Laboratory Diagnosticians. Grand RapidsGoogle Scholar
  146. Wiśniewski J, Siemionek J (1988) Chosen problems of immunoprophylaxis of Aujeszky’s disease in swine. Med Weter 44:81–84Google Scholar
  147. Wittmann G (1986) Aujeszky’s disease. Rev Sci Tech Off Int Epiz 5:959–977CrossRefGoogle Scholar
  148. Wittmann G (1991) Spread and control of Aujeszky’s disease (AD). Comp Immunol Microbial Infect Dis 14:165–173CrossRefGoogle Scholar
  149. Wittmann G, Bartenbach G, Jakubik J (1976) Cell-mediated immunity in Aujeszky’s virus infected pigs. Arch Virol 50:215–222PubMedCrossRefGoogle Scholar
  150. Wittmann G, Jakubik J (1979) Colostral immunity in piglets from sows vaccinated with inactivated Aujeszky disease virus vaccine. Arch Virol 60:33–42PubMedCrossRefGoogle Scholar
  151. Wittmann G, Jakubik J, Ahl R (1980) Multiplication and distribution of Aujeszky’s disease (pseudorabies) virus in vaccinated and non-vaccinated pigs after intranasal infection. Arch Virol 66:227–240PubMedCrossRefGoogle Scholar
  152. Wittmann G, Rziha HJ (1989) Aujeszky’s disease (pseudorabies) in pigs. In: Wittmann G (ed) Herpesvirus diseases of cattle, horses, and pigs. Kluwer Academic Publ, Boston/Dordrecht/London, pp 230–325CrossRefGoogle Scholar
  153. Yong T, Huanchun C, Shao-Bo X et al (2005) Development of a latex agglutination test using the major epitope domain of glycoprotein E of pseudorabies virus expressed in E. coli to differentiate between immune responses in pigs naturally infected or vaccinated with pseudorabies virus. Vet Res Commun 29:487–497PubMedCrossRefGoogle Scholar
  154. Yoon HA, Aleyas AG, George JA et al (2006) Differential segregation of protective immunity by encoded antigen in DNA vaccine against pseudorabies virus. Immunol Cell chain reaction assay for Pseudorabies virus surveillance purposes. J Vet Diagn Invest 24:739–745Google Scholar
  155. Zaichick SV, Bohannon KP, Hughes A et al (2013) The herpesvirus VP1/2 protein is an effector of dynein-mediated capsid transport and neuroinvasion. Cell Host Microbe 13:193–203PubMedCrossRefGoogle Scholar
  156. Zanella EL, Miller LC, Lager KM et al (2012) Evaluation of a real-time polymerase chain reaction assay for Pseudorabies virus surveillance purposes. J Vet Diagn Invest 24:739–745. doi: 10.1177/1040638712447279 PubMedCrossRefGoogle Scholar
  157. Zanin E, Capua I, Casaccia C et al (1997) Isolation and characterization of Aujeszky’s disease virus in captive brown bears from Italy. J Wildl Dis 33:632–634PubMedCrossRefGoogle Scholar
  158. Zuckermann FA (2000) Aujeszky’s disease virus: opportunities and challenges. Vet Res 31:121–131PubMedGoogle Scholar
  159. Zuckermann FA, Husmann RJ, Schwartz R (1998) Interleukin-12 enhances the virus-specific interferon gamma response of pigs to inactivated pseudorabies virus vaccine. Vet Immunol Immunopathol 63:57–67PubMedCrossRefGoogle Scholar
  160. Zupancic Z, Jukic B, Lojkic M et al (2002) Prevalence of antibodies to classical swine fever, Aujeszky’s disease, porcine reproductive and respiratory syndrome, and bovine viral diarrhoea viruses in wild boars in Croatia. J Vet Med B Infect Dis Vet Public Health 49:253–256PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ewelina Czyżewska Dors
    • 1
  • Małgorzata Pomorska Mól
    • 1
    Email author
  1. 1.National Veterinary Research Institute, Department of Swine DiseasesPulawyPoland

Personalised recommendations