Combining Graph Contraction and Strategy Generation for Green Security Games

  • Anjon Basak
  • Fei Fang
  • Thanh Hong Nguyen
  • Christopher Kiekintveld
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9996)

Abstract

Many real-world security problems can be modeled using Stackelberg security games (SSG), which model the interactions between a defender and attacker. Green security games focus on environmental crime, such as preventing poaching, illegal logging, or detecting pollution. A common problem in green security games is to optimize patrolling strategies for a large physical area such as a national park or other protected area. Patrolling strategies can be modeled as paths in a graph that represents the physical terrain. However, having a detailed graph to represent possible movements in a very large area typically results in an intractable computational problem due to the extremely large number of potential paths. While a variety of algorithmic approaches have been explored in the literature to solve security games based on large graphs, the size of games that can be solved is still quite limited. Here, we introduce abstraction methods for solving large graph-based security games and integrate these methods with strategy generation techniques. We demonstrate empirically that the combination of these methods results in dramatic improvements in solution time with modest impact on solution quality.

Keywords

Security Green security Abstraction Contraction Game theory 

Notes

Acknowledgement

We would like to thank to our partners from Rimba and Panthera for providing the real world data set. This work was supported by the NSF under Grant No. IIS-1253950.

References

  1. 1.
    Govt. of Mozambique announces major decline in national elephant population, May 2015Google Scholar
  2. 2.
    The IUCN Red List of threatened species, April 2015Google Scholar
  3. 3.
    Estimate of global financial losses due to illegal fishing, February 2016Google Scholar
  4. 4.
    Basilico, N., Gatti, N., Amigoni, F.: Patrolling security games: definition and algorithms for solving large instances with single patroller and single intruder. Artif. Intell. 184, 78–123 (2012)CrossRefMATHGoogle Scholar
  5. 5.
    Batz, G.V., Geisberger, R., Neubauer, S., Sanders, P.: Time-dependent contraction hierarchies and approximation. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 166–177. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13193-6_15 CrossRefGoogle Scholar
  6. 6.
    Breton, M., Alj, A., Haurie, A.: Sequential Stackelberg equilibria in two-person games. J. Optim. Theory Appl. 59(1), 71–97 (1988)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brown, M., Haskell, W.B., Tambe, M.: Addressing scalability and robustness in security games with multiple boundedly rational adversaries. In: Poovendran, R., Saad, W. (eds.) GameSec 2014. LNCS, vol. 8840, pp. 23–42. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-12601-2_2 Google Scholar
  8. 8.
    Brown, N., Ganzfried, S., Sandholm, T.: Hierarchical abstraction, distributed equilibrium computation, and post-processing, with application to a champion no-limit Texas Hold’em agent. Technical report (2014)Google Scholar
  9. 9.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: The Floyd-Warshall algorithm. In: Introduction to Algorithms, pp. 558–565 (1990)Google Scholar
  10. 10.
    Fang, F., Nguyen, T.H., Pickles, R., Lam, W.Y., Clements, G.R., An, B., Singh, A., Tambe, M., Lemieux, A.: Deploying PAWS: field optimization of the protection assistant for wildlife security. In: Proceedings of the Innovative Applications of Artificial Intelligence (2016)Google Scholar
  11. 11.
    Fang, F., Stone, P., Tambe, M.: When security games go green: designing defender strategies to prevent poaching and illegal fishing. In: International Joint Conference on Artificial Intelligence (IJCAI) (2015)Google Scholar
  12. 12.
    Field, C., Laws, R.: The distribution of the larger herbivores in the Queen Elizabeth National Park, Uganda. J. Appl. Ecol. 7, 273–294 (1970)CrossRefGoogle Scholar
  13. 13.
    Ganzfried, S., Sandholm, T.: Potential-aware imperfect-recall abstraction with earth mover’s distance in imperfect-information games. In: Conference on Artificial Intelligence (AAAI) (2014)Google Scholar
  14. 14.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-68552-4_24 CrossRefGoogle Scholar
  15. 15.
    Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)CrossRefGoogle Scholar
  16. 16.
    Gilpin, A., Sandholm, T.: A competitive Texas Hold’em poker player via automated abstraction and real-time equilibrium computation. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), vol. 21, p. 1007 (2006)Google Scholar
  17. 17.
    Gilpin, A., Sandholm, T.: Better automated abstraction techniques for imperfect information games, with application to Texas Hold’em poker. In: AAMAS, p. 192 (2007)Google Scholar
  18. 18.
    Gilpin, A., Sandholm, T.: Lossless abstraction of imperfect information games. J. ACM (JACM) 54(5), 25 (2007)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gilpin, A., Sandholm, T., Sørensen, T.B.: Potential-aware automated abstraction of sequential games, and holistic equilibrium analysis of Texas Hold’em poker. In: Proceedings of the Conference on Artificial Intelligence (AAAI), vol. 22, p. 50 (2007)Google Scholar
  20. 20.
    Gilpin, A., Sandholm, T., Sørensen, T.B.: A heads-up no-limit Texas Hold’em poker player: discretized betting models and automatically generated equilibrium-finding programs. In: AAMAS, pp. 911–918 (2008)Google Scholar
  21. 21.
    Haskell, W.B., Kar, D., Fang, F., Tambe, M., Cheung, S., Denicola, E.: Robust protection of fisheries with COmPASS. In: AAAI, pp. 2978–2983 (2014)Google Scholar
  22. 22.
    Holmern, T., Muya, J., Røskaft, E.: Local law enforcement and illegal bushmeat hunting outside the Serengeti National Park, Tanzania. Environ. Conserv. 34(01), 55–63 (2007)CrossRefGoogle Scholar
  23. 23.
    Iwashita, H., Ohori, K., Anai, H., Iwasaki, A.: Simplifying urban network security games with cut-based graph contraction. In: Proceedings of the 2016 International Conference on Autonomous Agents and Multiagent Systems, pp. 205–213 (2016)Google Scholar
  24. 24.
    Jain, M., Kardes, E., Kiekintveld, C., Ordónez, F., Tambe, M.: Security games with arbitrary schedules: a branch and price approach. In: AAAI (2010)Google Scholar
  25. 25.
    Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordóñez, F., Tambe, M.: Computing optimal randomized resource allocations for massive security games. In: Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 689–696 (2009)Google Scholar
  26. 26.
    Kroer, C., Sandholm, T.: Extensive-form game abstraction with bounds. In: Proceedings of the Fifteenth ACM Conference on Economics and Computation, pp. 621–638 (2014)Google Scholar
  27. 27.
    Leitmann, G.: On generalized Stackelberg strategies. J. Optim. Theory Appl. 26(4), 637–643 (1978)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Nguyen, T.H., et al.: Making the most of our regrets: regret-based solutions to handle payoff uncertainty and elicitation in green security games. In: Khouzani, M.H.R., Panaousis, E., Theodorakopoulos, G. (eds.) GameSec 2015. LNCS, vol. 9406, pp. 170–191. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25594-1_10 CrossRefGoogle Scholar
  29. 29.
    Paruchuri, P., Pearce, J.P., Marecki, J., Tambe, M., Ordonez, F., Kraus, S.: Playing games for security: an efficient exact algorithm for solving Bayesian Stackelberg games. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 895–902 (2008)Google Scholar
  30. 30.
    Pita, J., Bellamane, H., Jain, M., Kiekintveld, C., Tsai, J., Ordóñez, F., Tambe, M.: Security applications: lessons of real-world deployment. In: ACM SIGecom Exchanges, vol. 8, no. 2, p. 5 (2009)Google Scholar
  31. 31.
    Sandholm, T., Singh, S.: Lossy stochastic game abstraction with bounds. In: Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 880–897 (2012)Google Scholar
  32. 32.
    Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., Maule, B., Meyer, G.: Protect: a deployed game theoretic system to protect the ports of the united states. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 13–20 (2012)Google Scholar
  33. 33.
    Shieh, E., Jain, M., Jiang, A.X., Tambe, M.: Efficiently solving joint activity based security games. In: AAAI, pp. 346–352. AAAI Press (2013)Google Scholar
  34. 34.
    Skiena, S.: Dijkstra’s algorithm. In: Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica, pp. 225–227. Addison-Wesley, Reading (1990)Google Scholar
  35. 35.
    Tsai, J., Kiekintveld, C., Ordonez, F., Tambe, M., Rathi, S.: IRIS-a tool for strategic security allocation in transportation networks (2009)Google Scholar
  36. 36.
    Von Stengel, B., Zamir, S.: Leadership with commitment to mixed strategies (2004)Google Scholar
  37. 37.
    Yang, R., Ford, B., Tambe, M., Lemieux, A.: Adaptive resource allocation for wildlife protection against illegal poachers. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems, pp. 453–460 (2014)Google Scholar
  38. 38.
    Yang, R., Jiang, A.X., Tambe, M., Ordonez, F.: Scaling-up security games with boundedly rational adversaries: a cutting-plane approach. In: IJCAI (2013)Google Scholar
  39. 39.
    Yin, Z., Jiang, A.X., Tambe, M., Kiekintveld, C., Leyton-Brown, K., Sandholm, T., Sullivan, J.P.: TRUSTS: scheduling randomized patrols for fare inspection in transit systems using game theory. AI Mag. 33(4), 59 (2012)Google Scholar
  40. 40.
    Zinkevich, M., Johanson, M., Bowling, M., Piccione, C.: Regret minimization in games with incomplete information. In Advances in Neural Information Processing Systems, pp. 1729–1736 (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Anjon Basak
    • 1
  • Fei Fang
    • 2
  • Thanh Hong Nguyen
    • 2
  • Christopher Kiekintveld
    • 1
  1. 1.University of Texas at El PasoEl PasoUSA
  2. 2.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations