An Intelligent Model for Bispectral Index (BIS) in Patients Undergoing General Anesthesia

  • José Luis Casteleiro-RocaEmail author
  • Juan Albino Méndez Pérez
  • José Antonio Reboso-Morales
  • Francisco Javier de Cos Juez
  • Francisco Javier Pérez-Castelo
  • José Luis Calvo-Rolle
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 527)


Nowadays, the engineering tools play an important role in medicine, regardless of the area. The present research is focused in anesthesiology, specifically on the behavior of sedated patients. The work shows the Bispectral Index Signal (BIS) modeling of patients undergoing general anesthesia during surgery. With the aim of predicting the patient BIS signal, a model that allows to know its performance from the Electromyogram (EMG) and the propofol infusion rate has been created. The proposal has been achieved by using clustering combined with regression techniques and using a real dataset obtained from patients undergoing general anesthesia. Finally, the created model has been tested also with data from real patients, and the results obtained attested the accuracy of the model.





This study was conducted under the auspices of Research Project \(DPI2010-18278\), supported by the Spanish Ministry of Innovation and Science.


  1. 1.
    Alaiz Moretón, H., Calvo Rolle, J., García, I., Alonso Alvarez, A.: Formalization and practical implementation of a conceptual model for pid controller tuning. Asian J. Control 13(6), 773–784 (2011)CrossRefGoogle Scholar
  2. 2.
    Antón, J.C.Á., Nieto, P.J.G., de Cos Juez, F.J., Lasheras, F.S., Viejo, C.B., Gutiérrez, N.R.: Battery state-of-charge estimator using the MARS technique. IEEE Trans. Power Electron. 28(8), 3798–3805 (2013)CrossRefGoogle Scholar
  3. 3.
    Calvo-Rolle, J.L., Casteleiro-Roca, J.L., Quintián, H., del Carmen Meizoso-Lopez, M.: A hybrid intelligent system for PID controller using in a steel rolling process. Expert Syst. Appl. 40(13), 5188–5196 (2013)CrossRefGoogle Scholar
  4. 4.
    Calvo-Rolle, J.L., Fontenla-Romero, O., Pérez-Sánchez, B., Guijarro-Berdinas, B.: Adaptive inverse control using an online learning algorithm for neural networks. Informatica 25(3), 401–414 (2014)CrossRefGoogle Scholar
  5. 5.
    Calvo-Rolle, J.L., Quintian-Pardo, H., Corchado, E., del Carmen Meizoso-López, M., García, R.F.: Simplified method based on an intelligent model to obtain the extinction angle of the current for a single-phase half wave controlled rectifier with resistive and inductive load. J. Appl. Logic 13(1), 37–47 (2015)CrossRefGoogle Scholar
  6. 6.
    Casteleiro-Roca, J., Calvo-Rolle, J., Meizoso-Lopez, M., Piñón-Pazos, A., Rodríguez-Gómez, B.: New approach for the QCM sensors characterization. Sens. Actuators A Phys. 207, 1–9 (2014)CrossRefGoogle Scholar
  7. 7.
    Casteleiro-Roca, J.L., Calvo-Rolle, J.L., Meizoso-López, M.C., Piñón-Pazos, A.J., Rodríguez-Gómez, B.A.: Bio-inspired model of ground temperature behavior on the horizontal geothermal exchanger of an installation based on a heat pump. Neurocomputing 150, 90–98 (2015)CrossRefGoogle Scholar
  8. 8.
    Casteleiro-Roca, J.L., Pérez, J.A.M., Piñón-Pazos, A.J., Calvo-Rolle, J.L., Corchado, E.: Modeling the electromyogram (EMG) of patients undergoing anesthesia during surgery. In: Herrero, Á., Sedano, J., Baruque, B., Quintián, H., Corchado, E. (eds.) 10th International Conference on Soft Computing Models in Industrial and Environmental Applications. Advances in Intelligent Systems and Computing, vol. 368, pp. 273–283. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  9. 9.
    Casteleiro-Roca, J.L., Quintián, H., Calvo-Rolle, J.L., Corchado, E., del Carmen Meizoso-López, M., Piñón-Pazos, A.: An intelligent fault detection system for a heat pump installation based on a geothermal heat exchanger. J. Appl. Logic 17, 36–47 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Crespo-Ramos, M.J., MachóN-GonzáLez, I., LóPez-GarcíA, H., Calvo-Rolle, J.L.: Detection of locally relevant variables using SOM-NG algorithm. Eng. Appl. Artif. Intell. 26(8), 1992–2000 (2013)CrossRefGoogle Scholar
  11. 11.
    De Cos Juez, F.J., Lasheras, F.S., García Nieto, P., Suárez, M.S.: A new data mining methodology applied to the modelling of the influence of diet and lifestyle on the value of bone mineral density in post-menopausal women. Int. J. Comput. Math. 86(10–11), 1878–1887 (2009)CrossRefGoogle Scholar
  12. 12.
    García, R.F., Rolle, J.L.C., Castelo, J.P., Gomez, M.R.: On the monitoring task of solar thermal fluid transfer systems using NN based models and rule based techniques. Eng. Appl. Artif. Intell. 27, 129–136 (2014)CrossRefGoogle Scholar
  13. 13.
    García, R.F., Rolle, J.L.C., Gomez, M.R., Catoira, A.D.: Expert condition monitoring on hydrostatic self-levitating bearings. Expert Syst. Appl. 40(8), 2975–2984 (2013)CrossRefGoogle Scholar
  14. 14.
    Ghanghermeh, A., Roshan, G., Orosa, J.A., Calvo-Rolle, J.L., Costa, A.M.: New climatic indicators for improving urban sprawl: a case study of tehran city. Entropy 15(3), 999–1013 (2013)CrossRefGoogle Scholar
  15. 15.
    Heiberger, R., Neuwirth, E.: Polynomial regression. In: R Through Excel. Use R, pp. 269–284. Springer, New York (2009)CrossRefGoogle Scholar
  16. 16.
    Kaski, S., Sinkkonen, J., Klami, A.: Discriminative clustering. Neurocomputing 69(13), 18–41 (2005)CrossRefGoogle Scholar
  17. 17.
    Li, Y., Shao, X., Cai, W.: A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples. Talanta 72(1), 217–222 (2007)CrossRefGoogle Scholar
  18. 18.
    Litvan, H., Jensen, E.W., Galan, J., Lund, J., Rodriguez, B.E., Henneberg, S.W., Caminal, P., Villar Landeira, J.M.: Comparison of conventional averaged and rapid averaged, autoregressive-based extracted auditory evoked potentials for monitoring the hypnotic level during propofol induction. J. Am. Soc. Anesthesiologists 97(2), 351–358 (2002)Google Scholar
  19. 19.
    Machón-González, I., López-García, H., Calvo-Rolle, J.L.: A hybrid batch SOM-NG algorithm. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–5 (2010)Google Scholar
  20. 20.
    Manuel Vilar-Martinez, X., Aurelio Montero-Sousa, J., Luis Calvo-Rolle, J., Casteleiro-Roca, J.L.: Expert system development to assist on the verification of “tacan” system performance. Dyna 89(1), 112–121 (2014)Google Scholar
  21. 21.
    Nieto, P.G., Garcia-Gonzalo, E., Lasheras, F.S., de Cos Juez, F.J.: Hybrid PSO-SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability. Reliab. Eng. Syst. Saf. 138, 219–231 (2015)CrossRefGoogle Scholar
  22. 22.
    Osborn, J., Juez, F.J.D.C., Guzman, D., Butterley, T., Myers, R., Guesalaga, A., Laine, J.: Using artificial neural networks for open-loop tomography. Opt. Express 20(3), 2420–2434 (2012)CrossRefGoogle Scholar
  23. 23.
    Pérez, J.A.M., Torres, S., Reboso, J.A., Reboso, H.: Estrategias de control en la práctica de anestesia. Revista Iberoamericana de Automática e Informática Industrial RIAI 8(3), 241–249 (2011)CrossRefGoogle Scholar
  24. 24.
    Qin, A., Suganthan, P.: Enhanced neural gas network for prototype-based clustering. Pattern Recogn. 38(8), 1275–1288 (2005)CrossRefGoogle Scholar
  25. 25.
    Quintián, H., Calvo-Rolle, J.L., Corchado, E.: A hybrid regression system based on local models for solar energy prediction. Informatica 25(2), 265–282 (2014)CrossRefGoogle Scholar
  26. 26.
    Rolle, J., Gonzalez, I., Garcia, H.: Neuro-robust controller for non-linear systems. Dyna 86(3), 308–317 (2011)CrossRefGoogle Scholar
  27. 27.
    Sánchez, S.S., Vivas, A.M., Obregón, J.S., Ortega, M.R., Jambrina, C.C., Marco, I.L.T., Jorge, E.C.: Monitorización de la sedación profunda. el monitor BIS. Enfermería Intensiva 20(4), 159–166 (2009)CrossRefGoogle Scholar
  28. 28.
    Sigl, J.C., Chamoun, N.G.: An introduction to bispectral analysis for the electroencephalogram. J. Clin. Monit. 10(6), 392–404 (1994)CrossRefGoogle Scholar
  29. 29.
    Turrado, C.C., López, M.C.M., Lasheras, F.S., Gómez, B.A.R., Rollé, J.L.C., Juez, F.J.C.: Missing data imputation of solar radiation data under different atmospheric conditions. Sensors 14(11), 20382–20399 (2014)CrossRefGoogle Scholar
  30. 30.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)CrossRefGoogle Scholar
  31. 31.
    Wu, X.: Optimal designs for segmented polynomial regression models and web-based implementation of optimal design software. State University of New York at Stony Brook, Stony Brook, NY, USA (2007)Google Scholar
  32. 32.
    Zeng, Z., Wang, J.: Advances in Neural Network Research and Applications. Springer Publishing Company, Incorporated, Heidelberg (2010)CrossRefGoogle Scholar
  33. 33.
    Zhang, Z., Chan, S.C.: On kernel selection of multivariate local polynomial modelling and its application to image smoothing and reconstruction. J. Signal Process. Syst. 64(3), 361–374 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • José Luis Casteleiro-Roca
    • 1
    Email author
  • Juan Albino Méndez Pérez
    • 2
  • José Antonio Reboso-Morales
    • 2
  • Francisco Javier de Cos Juez
    • 3
  • Francisco Javier Pérez-Castelo
    • 1
  • José Luis Calvo-Rolle
    • 1
  1. 1.Department of Industrial EngineeringUniversity of A CoruñaFerrol, A CoruñaSpain
  2. 2.Dpto. de Ingeniería de Sistemas y Automática y Arquitectura y Tecnología de ComputadoresUniversity of La LagunaS/C de TenerifeSpain
  3. 3.Department of Mining ExploitationUniversity of OviedoOviedoSpain

Personalised recommendations