Advertisement

Methods in Neuromusicology: Principles, Trends, Examples and the Pros and Cons

  • Christiane Neuhaus
Chapter
Part of the Current Research in Systematic Musicology book series (CRSM, volume 4)

Abstract

Neuromusicology, also known as the Cognitive Neuroscience of Music, is a modern discipline devoted to the measurement of real-time processes in the human brain while perceiving and producing sound. Research topics range from acoustic feature processing and listening to melodies to composition and music performance. Before designing an experiment, researchers might find it helpful to be informed about the efficiency of methods and their pros and cons. The chapter at hand gives an overview of several methods used in the neurosciences with a special emphasis on their principles, constraints and fields of application. The focus is on transcranial magnetic stimulation (TMS), functional magnetic resonance imaging (fMRI), positron emission tomography (PET), electroencephalography (EEG) and on event-related potentials (ERP). The reader will also become acquainted with trends and recent developments towards whole-brain analyses and real life studies based on the idea to improve ecological validity.

Keywords

Positron Emission Tomography Transcranial Magnetic Stimulation Auditory Cortex Mismatch Negativity Gradient Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alluri, V., Toiviainen, P., Jääskeläinen, I.P., Glerean, E., Sams, M., Brattico, E.: Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. NeuroImage 59, 3677–3689 (2012)CrossRefGoogle Scholar
  2. 2.
    Andoh, J., Zatorre, R.J.: Interhemispheric connectivity influences the degree of modulation of TMS-induced effects during auditory processing. Front. Psychol. 2, Article 161, 13 pages (2011). doi: 10.3389/fpsyg.2011.00161
  3. 3.
    Besson, M., Faïta, F.: An event-related potential (ERP) study of musical expectancy: comparison of musicians with nonmusicians. J. Exp. Psychol.: Hum. Percept. Perf. 21(6), 1278–1296 (1995)Google Scholar
  4. 4.
    Bhattacharya, J., Petsche, H., Pereda, E.: Long-range synchrony in the ƴ-band: role in music perception. J. Neurosci. 21(6), 6329–6337 (2001)Google Scholar
  5. 5.
    Dietrich, A.: The cognitive neuroscience of creativity. Psychon. Bull. Rev. 11, 1011–1026 (2004)CrossRefGoogle Scholar
  6. 6.
    Drobisch, M. W.: Über musikalische Tonbestimmung und Temperatur [On musical pitch estimation and temperature]. In: Abhandlungen der Königlich-Sächsischen Gesellschaft der Wissenschaften 2, 1–120. Hirzel, Leizpig (1855).Google Scholar
  7. 7.
    Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., Taub, E.: Increased cortical representation of the fingers of the left hand in string players. Science 270(5234), 305–307 (1995)CrossRefGoogle Scholar
  8. 8.
    Ericsson, K.A.: The influence of experience and deliberate practice on the development of superior expert performance. In: Ericsson, K.A., et al. (eds.) The Cambridge Handbook of Expertise and Expert Performance (Chapter 38, pp. 685–706. Cambridge University Press, New York (2006)CrossRefGoogle Scholar
  9. 9.
    Fachner, J.: Topographic EEG changes accompanying Cannabis-induced alteration of music perception—Cannabis as a hearing aid? J. Cannabis Ther. 2(2), 3–36 (2002)CrossRefGoogle Scholar
  10. 10.
    Friederici, A.D.: Towards a neural basis of auditory sentence processing. Trends Cogn. Sci. 6(2), 78–84 (2002)CrossRefGoogle Scholar
  11. 11.
    Gingras, B., Pohler, G., Fitch, W.T.: Exploring Shamanic journeying: Repetitive drumming with Shamanic instructions induces specific subjective experiences but no larger Cortisol decrease than instrumental meditation music. PLOS One 9(7), 9 pages (2014)Google Scholar
  12. 12.
    Haynes, J.-D., Rees, G.: Decoding mental states from brain activity in humans. Nat. Rev. Neurosci. 7, 523–534 (2006)CrossRefGoogle Scholar
  13. 13.
    Jäncke, L.: Methoden der Bildgebung in der Psychologie und den kognitiven Neurowissenschaften. W. Kohlhammer, Stuttgart (2005)Google Scholar
  14. 14.
    Jäncke, L.: Lehrbuch Kognitive Neurowissenschaften. Huber, Bern (2013)Google Scholar
  15. 15.
    Jäncke, L., Jordan, K.: Functional neuroanatomy of mental rotation performance. In: Mast, F.W., Jäncke, L. (eds.) Spatial Processing in Navigation, Imagery and Perception, pp. 183–207. Springer, New York (2007)CrossRefGoogle Scholar
  16. 16.
    Janata, P., Birk, J.L., van Horn, J.D., Leman, M., Tillmann, B., Bharucha, J.J.: The cortical topography of tonal structures underlying Western music. Science 298, 2167–2170 (2002)CrossRefGoogle Scholar
  17. 17.
    Jasper, H.H.: The ten-twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 10(2), 370–375 (1958)CrossRefGoogle Scholar
  18. 18.
    Knösche, T.R., Neuhaus, C., Haueisen, J., Alter, K., Maess, B., Witte, O.W., Friederici, A.D.: Perception of phrase structure in music. Hum. Brain Mapp. 24(4), 259–273 (2005)CrossRefGoogle Scholar
  19. 19.
    Köchli, V.D., Marincek, B.: Wie funktioniert MRI?. Springer, Berlin (1998)CrossRefGoogle Scholar
  20. 20.
    Koelsch, S.: Music-syntactic processing and auditory memory: similarities and differences between ERAN and MMN. Psychophysiology 46, 179–190 (2009)CrossRefGoogle Scholar
  21. 21.
    Koelsch, S., Schröger, E., Tervaniemi, M.: Superior pre-attentive auditory processing in musicians. NeuroReport 10, 1309–1313 (1999)CrossRefGoogle Scholar
  22. 22.
    Koelsch, S., Kasper, E., Sammler, D., Schulze, K., Gunter, T., Friederici, A.D.: Music, language and meaning: brain signatures of semantic processing. Nat. Neurosci. 7, 302–307 (2004)CrossRefGoogle Scholar
  23. 23.
    Kohlmetz, C., Kopiez, R., Altenmüller, E.: Stability of motor programs during a state of meditation: Electrocortical activity in a pianist playing ‘Vexations’ by Erik Satie continuously for 28 hours. Psychol. Music 31(2), 173–186 (2003)CrossRefGoogle Scholar
  24. 24.
    Kujala, T., Näätänen, R.: The mismatch negativity in evaluating cental auditory dysfunction in dyslexia. Neurosci. Biobehav. Rev. 25(6), 535–543 (2001)CrossRefGoogle Scholar
  25. 25.
    Kutas, M., Hillyard, S.A.: Reading senseless sentences: brain potentials reflect semantic incongruity. Science 207, 203–208 (1980)CrossRefGoogle Scholar
  26. 26.
    Launay, J., Dean, R.T., Bailes, F.: Rapid learning of associations between sound and action through observed movement. A TMS study. Psychomusicology 26(1), 35–42 (2016)CrossRefGoogle Scholar
  27. 27.
    Leman, M.: Relevance of neuromusicology for music research. J. New Music Res. 28(3), 186–199 (1999)CrossRefGoogle Scholar
  28. 28.
    Limb, C.J., Braun, A.R.: Neural substrates of spontaneous musical performance: an fMRI study of Jazz improvisation. PLoS One 3(2), e1679 (11 pages) (2008)Google Scholar
  29. 29.
    Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008)CrossRefGoogle Scholar
  30. 30.
    Maguire, E.A., Gadian, D.G., Johnsrude, I.S., Good, C.D., Ashburner, J., Frackowiak, R.S.J., Frith, C.D.: Navigation-related structural change in the hippocampi of taxi drivers. PNAS 98(8), 4398–4403 (2000)Google Scholar
  31. 31.
    Mueller, K., Mildner, T., Fritz, T., Lepsien, J., Schwarzbauer, C., Schroeter, M.L., Möller, H.E.: Investigating brain response to music: a comparison of different fMRI acquisition schemes. NeuroImage 54, 337–343 (2011)CrossRefGoogle Scholar
  32. 32.
    Münte, T.F., Altenmüller, E., Jäncke, L.: The musician’s brain as a model of neuroplasticity. Nat. Rev. Neurosci. 3, 473–478 (2002)Google Scholar
  33. 33.
    Musacchia, G., Sams, M., Skoe, E., Kraus, N.: Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. PNAS 104(40), 15894–15898 (2007)CrossRefGoogle Scholar
  34. 34.
    Neisser, U.: Cognitive Psychology. Meredith, New York (1967)Google Scholar
  35. 35.
    Neuhaus, C., Knösche, T.R., Friederici, A.D.: Effects of musical expertise and boundary markers on phrase perception in music. J. Cogn. Neurosci. 18(3), 472–493 (2006)CrossRefGoogle Scholar
  36. 36.
    Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. PNAS 87, 9868–9872 (1990)CrossRefGoogle Scholar
  37. 37.
    Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L.E., Hoke, M.: Increased auditory cortical representation in musicians. Nature 392, 811–814 (1998)CrossRefGoogle Scholar
  38. 38.
    Pantev, C., Roberts, L.E., Schulz, M., Engelien, A., Ross, B.: Timbre-specific enhancement of auditory cortical representations in musicians. NeuroReport 12(1), 169–174 (2001)CrossRefGoogle Scholar
  39. 39.
    Park, J.L., Fairweather, M.M., Donaldson, D.I.: Making the case for mobile cognition: EEG and sports performance. Neurosci. Biobehav. Rev. 52, 117–130 (2015)CrossRefGoogle Scholar
  40. 40.
    Petsche, H.: Approaches to verbal, visual and musical creativity by EEG coherence analysis. Int. J. Psychophysiol. 24, 145–159 (1996)CrossRefGoogle Scholar
  41. 41.
    Pylyshyn, Z.: Return of the mental image: are there really pictures in the brain? Trends Cogn. Sci. 7(3), 113–118 (2003)CrossRefGoogle Scholar
  42. 42.
    Révész, G.: Tonpsychologie. Voss, Leipzig (1913)Google Scholar
  43. 43.
    Rösler, F.: Statistische Verarbeitung von Biosignalen: Die Quantifizierung hirnelektrischer Signale. In: Baumann, U., et al. (eds.) Klinische Psychologie: Trends in Forschung und Praxis 3, pp. 112–156. Huber, Bern (1980)Google Scholar
  44. 44.
    Rouget, G.: Music and trance. A theory of the relations between music and possession. Chicago University Press, Chicago (1985)Google Scholar
  45. 45.
    Rumelhart, D.E., Norman, D.A.: Representation in memory. Stevens Handbook of Experimental Psychology 2, 2nd edn, pp. 511–587. Wiley, New York (1988)Google Scholar
  46. 46.
    Sagiv, N., Bentin, S.: Structural encoding of human and schematic faces: holistic and part-based processes. J. Cogn. Neurosci. 13(7), 937–951 (2001)CrossRefGoogle Scholar
  47. 47.
    Schneider, A.: Foundations of systematic musicology: a study in history and theory. In: Schneider, A. (ed.) Systematic and Comparative Musicology: Concepts, Methods, Findings, pp. 11–61. Peter Lang, Frankfurt am Main (2008)Google Scholar
  48. 48.
    Shepard, R.N., Metzler, J.: Mental rotation of three-dimensional objects. Science 171, 701–703 (1971)CrossRefGoogle Scholar
  49. 49.
    Siedentopf, C.M.: (Internet source) University of Innsbruck, Austria (2013). www.fMRI-easy.de
  50. 50.
    Sigalovsky, I.S., Melcher, J.R.: Effects of sound level on fMRI activation in human brainstem, thalamic and cortical centers. Hear. Res. 215(1–2), 67–76 (2006)CrossRefGoogle Scholar
  51. 51.
    Steinhauer, K., Alter, K., Friederici, A.D.: Brain potentials indicate immediate use of prosodic cues in natural speech processing. Nat. Neurosci. 2(2), 191–196 (1999)CrossRefGoogle Scholar
  52. 52.
    Stupacher, J., Hove, M.J., Novembre, G., Schütz-Bosbach, S., Keller, P.E.: Musical groove modulates motor cortex excitability: a TMS investigation. Brain Cogn. 82, 127–136 (2013)CrossRefGoogle Scholar
  53. 53.
    Talairach, J., Tournoux, P.: Co-Planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Thieme Medical Publishers, New York (1988)Google Scholar
  54. 54.
    Tayah, T.F., Abou-Khalil, B., Gilliam, F.G., Knowlton, R.C., Wushensky, C.A., Gallagher, M.J.: Musicogenic seizures can arise from multiple temporal lobe foci: intracranial EEG analyses of three patients. Epilepsia 47, 1402–1406 (2006)CrossRefGoogle Scholar
  55. 55.
    Tervaniemi, M., van Zuijen, T.L.: Methodologies of brain research in cognitive musicology. J. New Music Res. 28(3), 200–208 (1999)CrossRefGoogle Scholar
  56. 56.
    Thompson, T., Steffert, T., Ros, T., Leach, J., Gruzelier, J.: EEG applications for sport and performance. Methods 45, 279–288 (2008)CrossRefGoogle Scholar
  57. 57.
    Tiitinen, H., Virtanen, J., Ilmoniemi, R.J., Kamppuri, J., Ollikainen, M., Ruohonen, J., Näätänen, R.: Separation of contamination caused by coil clicks from responses elicited by transcranial magnetic stimulation. Clin. Neurophysiol. 110, 982–985 (1999)CrossRefGoogle Scholar
  58. 58.
    Wagemans, J., Vertraten, F.A.J., He, S.: Editorial—beyond the decade of the brain: towards a functional neuroanatomy of the mind. Acta Psychol. 107, 1–7 (2001)CrossRefGoogle Scholar
  59. 59.
    Warren, J.D., Uppenkamp, S., Patterson, R.D., Griffiths, T.D.: Separating pitch chroma and pitch height in the human brain. PNAS 100(17), 10038–10042 (2003)CrossRefGoogle Scholar
  60. 60.
    Zatorre, R.J., Belin, P.: Spectral and temporal processing in human auditory cortex. Cereb. Cortex 11, 946–953 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Systematic Musicology, University of HamburgHamburgGermany

Personalised recommendations