20 Years of Progress in Video Compression – from MPEG-1 to MPEG-H HEVC. General View on the Path of Video Coding Development

  • Damian Karwowski
  • Tomasz Grajek
  • Krzysztof Klimaszewski
  • Olgierd Stankiewicz
  • Jakub Stankowski
  • Krzysztof Wegner
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 525)


Compression of moving images has opened unprecedented opportunities of transmission and storage of digital video. Extraordinary performance of today’s video codecs is a result of tens of years of work on the development of methods of data encoding. This paper is an attempt to show this history of development. It highlights the history of individual algorithms of data encoding as well as the evolution of video compression technologies as a whole. With the development of successive technologies also functionalities of codecs were evolving, which make also the topic of the paper. The paper ends the attempt of authors’ forecasting about the future evolution of video compression technologies.


Discrete Cosine Transformation Video Code High Efficiency Video Code Scalable Video Code Video Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research project was supported by The National Centre for Research and Development, Poland. Grant No. LIDER/023/541/L-4/12/NCBR (2013–2016).


  1. 1.
    Abramson, N.: Information Theory and Coding. McGraw-Hill, New York (1963)Google Scholar
  2. 2.
    Ahmed, N., Natarajan, T., Rao, R.K.: Discrete cosine transform. IEEE Trans. Comput. C–23, 90–93 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    DeVore, R., et al.: Image compression through wavelet transform coding. IEEE Trans. Inf. Theory 38(2), 719–746 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Domański, M.: Approximate Video Bitrate Estimation for Television Services, ISO/IEC JTC1/SC29/WG11 MPEG 2015, M36571, Warsaw, Poland, 20–27 June 2015Google Scholar
  6. 6.
    Duda, J.: Asymmetric numeral systems: entropy coding combining speed of Hyffman coding with compression rate of arithmetic coding. arXiv: 1311.2540
  7. 7.
    Golomb, S.W.: Run-length encoding. IEEE Trans. Inf. Theory IT–12, 399–401 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Huffman, D.A.: A method for the construction of minimum-redundancy codes. In: Proceedings of the I. R. E, pp. 1098–1101, September 1952Google Scholar
  9. 9.
    ISO/IEC 13818-2 International Standard, “Generic Coding of Moving Pictures, Associated Audio”, Part 2: Video, 2nd edn. (2000)Google Scholar
  10. 10.
    ISO/IEC 14496-10, International Standard, Generic Coding of Audio-Visual Objects, Part 10: Advanced Video Coding, 6th edn., 2010, take ITU-T Rec. H.264, Edition 5.0 (version 11) (2010)Google Scholar
  11. 11.
    ISO/IEC 15444-1, International Standard, JPEG: Core coding system, 2nd edn., 2004, also: ITU-T Rec. T.800, 2nd edn. (2002)Google Scholar
  12. 12.
    ISO/IEC 15444-1 and ITU-T Rec. T.800, Information Technology JPEG 2000 image coding system (2000)Google Scholar
  13. 13.
    ISO/IEC and ITU-T, High Efficiency Video Coding (HEVC), ISO/IEC 23008-2 (MPEG-H Part 2)/ITU-T Rec. H.265 (2013)Google Scholar
  14. 14.
    ISO/IEC IS 11172-2 International Standard, Coding of Moving Pictures, Associated Audio for Digital Storage Media at up to about 1.5 Mbps, Part 2: Video (1993)Google Scholar
  15. 15.
    ISO/IEC JTC1/SC29/WG11 MPEG2004/M110737, Subjective test results for the CfP on Scalable Video Coding Technology, Munich, March 2004Google Scholar
  16. 16.
    ISO/IEC JTC1/SC29/WG11, N6193, MPEG Call for proposals on scalable video coding technologyGoogle Scholar
  17. 17.
    ITU-T Rec. H.263, Video Coding for Low Bitrate Communication (2005)Google Scholar
  18. 18.
    Jaswant, R., Anil, J., Jain, K.: Displacement measurement and its application in interframe image coding. IEEE Trans. Commun. - TCOM 29(12), 1799–1808 (1981)CrossRefGoogle Scholar
  19. 19.
    Ndjiki-Nya, P., Stüber, C., Wiegand, T.: A new generic texture synthesis approach for enhanced H.264/MPEG4-AVC video coding. In: Atzori, L., Giusto, D.D., Leonardi, R., Pereira, F. (eds.) VLBV 2005. LNCS, vol. 3893, pp. 121–128. Springer, Heidelberg (2006). doi: 10.1007/11738695_17 CrossRefGoogle Scholar
  20. 20.
    Ohm, J.-R.: Temporal domain subband video coding with motion compensation. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, pp. 229–232 (1992)Google Scholar
  21. 21.
    Ohm, J.-R.: Three-dimensional motion-compensated subband coding. In: Proceedings of International Symposium on Video Communications and Fiber Optic Services, SPIE, vol. 1977, pp. 188–197 (1993)Google Scholar
  22. 22.
    Ohm, J.-R.: Three-dimensional subband coding with motion compensation. IEEE Trans. Image Process. 3, 559–571 (1994)CrossRefGoogle Scholar
  23. 23.
    Salomon, D., Motta, G.: Handbook of Data Compression. Springer, London (2010)CrossRefzbMATHGoogle Scholar
  24. 24.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    SMPTE Standard for Television: VC-1 Compressed Video Bitstream Format and Decoding Process, ANSI/SMPTE 421M (2006)Google Scholar
  26. 26.
    SMPTE Standard: VC-2 Video Compression, SMPTE 2042-1:2009 (2009)Google Scholar
  27. 27.
    SMPTE Standard: VC-3 Picture Compression and Data Stream Format, SMPTE2019-1:2005 (2005)Google Scholar
  28. 28.
    Teuhola, J.: A compression method for clustered bit-vectors. Inf. Process. Lett. 7, 308–311 (1978)CrossRefzbMATHGoogle Scholar
  29. 29.
    U.S. patent 2605361, C. Chapin Cutler.: Differential Quantization of Communication Signals, filed June 29, 1950, issued 29 July 1952Google Scholar
  30. 30.
    Vetterli, M., Kovacevic, J.: Wavelets and Subband Coding. Prentice-Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  31. 31.
    WebM Project, “VP9 Bitstream & Decoding Process Specification” (v. 0.6), March 2016.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Damian Karwowski
    • 1
  • Tomasz Grajek
    • 1
  • Krzysztof Klimaszewski
    • 1
  • Olgierd Stankiewicz
    • 1
  • Jakub Stankowski
    • 1
  • Krzysztof Wegner
    • 1
  1. 1.Chair of Multimedia Telecommunications and MicroelectronicsPoznań University of TechnologyPoznańPoland

Personalised recommendations